Сделать свой сайт бесплатно

Реклама

Создай свой сайт в 3 клика и начни зарабатывать уже сегодня.

@ADVMAKER@

Руководство По Проектированию Оснований И Фундаментов Москва 1978

18.05.2015
Руководство По Проектированию Оснований И Фундаментов Москва 1978

Москвы в области фундаментостроения и подземного строительства. 1978. Руководство по проектированию оснований и фундаментов на на.

Раздел 5 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА НАБУХАЮЩИХ ГРУНТАХ Раздел 6 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ВОДОНАСЫЩЕННЫХ ЗАТОРФОВАННЫХ ГРУНТАХ Раздел 7 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ИЛАХ Раздел 8 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ЭЛЮВИАЛЬНЫХ ГРУНТАХ Раздел 9 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ЗАСОЛЕННЫХ ГРУНТАХ Руководство по проектированию оснований зданий и сооружений составлено в развитие главы СНиП II-15-74 «Основания зданий и сооружений» и приводит рекомендации, детализирующие эти нормы проектирования по вопросам номенклатуры грунтов и методов определения расчетных значений их характеристик; принципов проектирования оснований и прогнозирования изменения уровня грунтовых вод; вопросов глубины заложения фундаментов; методов расчета оснований по деформациям и по несущей способности; особенностей проектирования оснований зданий и сооружений, возводимых на региональных видах грунтов, а также расположенных в сейсмических районах и на подрабатываемых территориях. Руководство предназначено для использования в проектных и изыскательских организациях, обслуживающих строительство промышленных, жилых и общественных зданий и сооружений. Руководство по проектированию оснований зданий и сооружений развивает требования главы СНиП II-15-74 и приводит рекомендации и примеры расчета оснований по вопросам, изложенным в этой главе норм, за исключением вопросов, касающихся особенностей проектирования оснований опор линий электропередачи, а также мостов и водопропускных труб. Руководство составлено НИИ оснований и подземных сооружений Госстроя СССР при участии института «Фундаментпроект» Минмонтажспецстроя СССР, представившего материалы по расчету несущей способности оснований и осадок фундаментов, а также характеристикам грунтов, ПНИИИС Госстроя СССР - по прогнозированию уровня грунтовых вод и Днепропетровского инженерно-строительного института (ДИСИ) Минвуза УССР - по особенностям проектирования оснований, сложенных элювиальными грунтами. Руководство разрабатывалось лабораториями НИИОСП: естественных оснований и конструкций фундаментов, методов исследования грунтов, механики грунтов, строительства на просадочных грунтах, строительства на слабых грунтах, динамики грунтов, физикохимии мерзлых грунтов. Руководство составляли: раздел 1 «Общие положения» - канд. техн. наук М.Г. Ефремов; раздел 2 «Номенклатура грунтов» - канд. техн. наук О.И. Игнатова; раздел 3 «Проектирование оснований»: подразделы «Общие указания» и «Нагрузки» - канд. техн. наук А.В. Вронский; подраздел «Нормативные и расчетные значения характеристик грунтов» - кандидаты техн. наук О.И. Игнатова и В.В. Михеев; подразделы «Глубина заложения фундаментов» и «Расчет устойчивости фундаментов при морозном пучении» - д-р техн. наук М.Ф. Киселев; подраздел «Грунтовые воды» - канд. техн. наук. М.Г. Ефремов, инж. З.П. Гавшина и канд. техн. наук Е.С. Дзекцер (ПНИИИС); подраздел «Расчетные давления на грунты основания» - канд. техн. наук М.Г. Ефремов; «Принципы расчета» и «Расчет деформаций» - кандидаты техн. наук А.В. Вронский и Т.А. Маликова, д-р техн. наук, проф. К.Е. Егоров; «Расчет оснований по несущей способности» - канд. техн. наук A.С. Снарский и инж. М.Л. Моргулис (Фундаментпроект); «Мероприятия по снижению влияния деформаций оснований»- канд. техн. наук А.В. Вронский; указания по прерывистым фундаментам - д-р техн. наук, проф. Е.А. Сорочан; указания по рыхлым пескам - кандидаты техн. наук Д.Е. Польшин и С.В. Довнарович; указания по натурным измерениям деформаций - инж. Е.М. Перепонова; разделы 4 - 12 «Особенности проектирования оснований зданий и сооружений, возводимых: 4... на просадочных грунтах» - д-р техн. наук B.И. Крутов; 5... на набухающих грунтах» - д-р техн. наук, проф. Е.А. Сорочан; 6... на заторфованных грунтах» - канд. техн. наук П.А. Коновалов; 7... на илах»-канд. техн. наук Д.Е. Польшин; 8... на элювиальных грунтах» - д-р техн. наук, проф. В.Б. Швец, кандидаты техн. наук И.С. Швец и В.В. Павлов (ДИСИ); 9... на засоленных грунтах» - канд. техн. наук В.П. Петрухин; 10... на насыпных грунтах» - д-р техн. наук В.И. Крутов; 11... на подрабатываемых территориях»-канд. техн. наук А. И. Юшин; )2... в сейсмических районах» - д-р техн. наук В.А. Ильичев и канд. техн. наук Л.Р. Ставницер. Руководство по проектированию оснований зданий и сооружений Начало действия: 1978-01-01 Дата последнего изменения: 2008-05-04 Вид документа: Руководство Область применения: 1.1. Настоящее Руководство, составленное в развитие главы СНиП II-15-74 «Основания зданий и сооружений», рекомендуется использовать при проектировании оснований промышленных, жилых и общественных зданий и сооружений всех областей строительства, В том числе городского и сельскохозяйственного, промышленного и транспортного. В Руководстве не рассматриваются вопросы проектирования оснований опор воздушных линий электропередачи и оснований мостов и водопропускных труб. 1.2(1.1). Нормы настоящей главы должны соблюдаться при проектировании оснований зданий и сооружений. Утвержден: НИИОСП им. Герсеванова Госстроя СССР(13), Разработчики документа: НИИОСП им. Н.М. Герсеванова Госстроя СССР(66), институт Фундаментпроект Минмонтажспецстроя СССР(13), ПНИИИС Госстроя СССР(44), ДИСИ Минвуза УССР(4),','url':'http://www.complexdoc.ru/ntdtext/544497/1','og_descr':'Руководство Руководство по проектированию оснований зданий и сооружений

Руководство Руководство по проектированию оснований зданий и сооруженийруководство по проектированию оснований и фундаментов москва 1978

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОСНОВАНИЙ И ПОДЗЕМНЫХ СООРУЖЕНИЙ ИМ. Н. М. ГЕРСЕВАНОВА ГОССТРОЯ СССР РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ МОСКВА 1978 ПРЕДИСЛОВИЕ Раздел 1 ОБЩИЕ ПОЛОЖЕНИЯ Раздел 2 НОМЕНКЛАТУРА ГРУНТОВ ОСНОВАНИЙ Раздел 3 ПРОЕКТИРОВАНИЕ ОСНОВАНИЙ ОБЩИЕ УКАЗАНИЯ НАГРУЗКИ, УЧИТЫВАЕМЫЕ В РАСЧЕТАХ ОСНОВАНИЙ НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ЗНАЧЕНИЯ ХАРАКТЕРИСТИК ГРУНТОВ МЕТОДЫ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИОННЫХ И ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК ГРУНТОВ ВЫДЕЛЕНИЕ ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИХ ЭЛЕМЕНТОВ Вычисление нормативных и расчетных значений прочностных и деформационных характеристик грунтов по результатам определения их физических характеристик Количество определений характеристик грунтов Рекомендации по разработке региональных таблиц прочностных и деформационных характеристик грунтов Определение характеристик грунта с учетом возможного изменения его влажности в процессе строительства и эксплуатации ГРУНТОВЫЕ ВОДЫ ГЛУБИНА ЗАЛОЖЕНИЯ ФУНДАМЕНТОВ РАСЧЕТ ОСНОВАНИЙ ПО ДЕФОРМАЦИЯМ Определение расчетного давления на грунты основания Расчет деформаций оснований ОПРЕДЕЛЕНИЕ ОСАДКИ ОПРЕДЕЛЕНИЕ КРЕНА ФУНДАМЕНТОВ Предельно допустимые деформации основания РАСЧЕТ ОСНОВАНИЙ ПО НЕСУЩЕЙ СПОСОБНОСТИ РАСЧЕТ УСТОЙЧИВОСТИ ФУНДАМЕНТОВ ПРИ ДЕЙСТВИИ СИЛ МОРОЗНОГО ПУЧЕНИЯ ГРУНТОВ ОСНОВАНИЯ МЕРОПРИЯТИЯ, НАПРАВЛЕННЫЕ НА СНИЖЕНИЕ ВЛИЯНИЯ ДЕФОРМАЦИЙ ОСНОВАНИЙ НА ЭКСПЛУАТАЦИОННУЮ ПРИГОДНОСТЬ ЗДАНИЙ И СООРУЖЕНИЙ Раздел 4 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ПРОСАДОЧНЫХ ГРУНТАХ ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИМ ИССЛЕДОВАНИЯМ В РАЙОНАХ РАСПРОСТРАНЕНИЯ ПРОСАДОЧНЫХ ГРУНТОВ ОПРЕДЕЛЕНИЕ РАСЧЕТНЫХ ДАВЛЕНИЙ НА ПРОСАДОЧНЫЕ ГРУНТЫ РАСЧЕТ ОСНОВАНИЙ НА ПРОСАДОЧНЫХ ГРУНТАХ ПО ДЕФОРМАЦИЯМ ОБЩИЕ ПОЛОЖЕНИЯ ПО ПРОЕКТИРОВАНИЮ ОСНОВАНИЙ ПРОЕКТИРОВАНИЕ ОСНОВАНИЙ, УПЛОТНЕННЫХ ТЯЖЕЛЫМИ ТРАМБОВКАМИ ПРОЕКТИРОВАНИЕ ГРУНТОВЫХ ПОДУШЕК ПРОЕКТИРОВАНИЕ ФУНДАМЕНТОВ В ВЫТРАМБОВАННЫХ КОТЛОВАНАХ ПРОЕКТИРОВАНИЕ ОСНОВАНИЙ, УПЛОТНЕННЫХ ГРУНТОВЫМИ СВАЯМИ ПРОЕКТИРОВАНИЕ ОСНОВАНИЙ, УПЛОТНЕННЫХ ПРЕДВАРИТЕЛЬНЫМ ЗАМАЧИВАНИЕМ ВОДОЗАЩИТНЫЕ МЕРОПРИЯТИЯ КОНСТРУКТИВНЫЕ МЕРОПРИЯТИЯ Раздел 5 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА НАБУХАЮЩИХ ГРУНТАХ Раздел 6 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ВОДОНАСЫЩЕННЫХ ЗАТОРФОВАННЫХ ГРУНТАХ Раздел 7 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ИЛАХ Раздел 8 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ЭЛЮВИАЛЬНЫХ ГРУНТАХ Раздел 9 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ЗАСОЛЕННЫХ ГРУНТАХ ОПРЕДЕЛЕНИЕ СУФФОЗИОННОЙ ОСАДКИ ОСНОВАНИЙ, СЛОЖЕННЫХ ЗАСОЛЕННЫМИ ГРУНТАМИ Раздел 10 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА НАСЫПНЫХ ГРУНТАХ ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИМ ИССЛЕДОВАНИЯМ НА ПЛОЩАДКАХ РАСПОЛОЖЕНИЯ НАСЫПНЫХ ГРУНТОВ РАСЧЕТ ОСНОВАНИЙ, СЛОЖЕННЫХ НАСЫПНЫМИ ГРУНТАМИ ПРОЕКТИРОВАНИЕ ОСНОВАНИЙ, СЛОЖЕННЫХ НАСЫПНЫМИ ГРУНТАМИ Раздел 11 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ И ФУНДАМЕНТОВ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ НА ПОДРАБАТЫВАЕМЫХ ТЕРРИТОРИЯХ Раздел 12 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ, ВОЗВОДИМЫХ В СЕЙСМИЧЕСКИХ РАЙОНАХ Руководство по проектированию оснований зданий и сооружений составлено в развитие главы СНиП II-15-74 «Основания зданий и сооружений» и приводит рекомендации, детализирующие эти нормы проектирования по вопросам номенклатуры грунтов и методов определения расчетных значений их характеристик; принципов проектирования оснований и прогнозирования изменения уровня грунтовых вод; вопросов глубины заложения фундаментов; методов расчета оснований по деформациям и по несущей способности; особенностей проектирования оснований зданий и сооружений, возводимых на региональных видах грунтов, а также расположенных в сейсмических районах и на подрабатываемых территориях. Руководство предназначено для использования в проектных и изыскательских организациях, обслуживающих строительство промышленных, жилых и общественных зданий и сооружений. ПРЕДИСЛОВИЕ Руководство по проектированию оснований зданий и сооружений развивает требования главы СНиП II-15-74 и приводит рекомендации и примеры расчета оснований по вопросам, изложенным в этой главе норм, за исключением вопросов, касающихся особенностей проектирования оснований опор линий электропередачи, а также мостов и водопропускных труб. Руководство составлено НИИ оснований и подземных сооружений Госстроя СССР при участии института «Фундаментпроект» Минмонтажспецстроя СССР, представившего материалы по расчету несущей способности оснований и осадок фундаментов, а также характеристикам грунтов, ПНИИИС Госстроя СССР - по прогнозированию уровня грунтовых вод и Днепропетровского инженерно-строительного института (ДИСИ) Минвуза УССР - по особенностям проектирования оснований, сложенных элювиальными грунтами. Руководство разрабатывалось лабораториями НИИОСП: естественных оснований и конструкций фундаментов, методов исследования грунтов, механики грунтов, строительства на просадочных грунтах, строительства на слабых грунтах, динамики грунтов, физикохимии мерзлых грунтов. Руководство составляли: раздел 1 «Общие положения» - канд. техн. наук М.Г. Ефремов; раздел 2 «Номенклатура грунтов» - канд. техн. наук О.И. Игнатова; раздел 3 «Проектирование оснований»: подразделы «Общие указания» и «Нагрузки» - канд. техн. наук А.В. Вронский; подраздел «Нормативные и расчетные значения характеристик грунтов» - кандидаты техн. наук О.И. Игнатова и В.В. Михеев; подразделы «Глубина заложения фундаментов» и «Расчет устойчивости фундаментов при морозном пучении» - д-р техн. наук М.Ф. Киселев; подраздел «Грунтовые воды» - канд. техн. наук. М.Г. Ефремов, инж. З.П. Гавшина и канд. техн. наук Е.С. Дзекцер (ПНИИИС); подраздел «Расчетные давления на грунты основания» - канд. техн. наук М.Г. Ефремов; «Принципы расчета» и «Расчет деформаций» - кандидаты техн. наук А.В. Вронский и Т.А. Маликова, д-р техн. наук, проф. К.Е. Егоров; «Расчет оснований по несущей способности» - канд. техн. наук A.С. Снарский и инж. М.Л. Моргулис (Фундаментпроект); «Мероприятия по снижению влияния деформаций оснований»- канд. техн. наук А.В. Вронский; указания по прерывистым фундаментам - д-р техн. наук, проф. Е.А. Сорочан; указания по рыхлым пескам - кандидаты техн. наук Д.Е. Польшин и С.В. Довнарович; указания по натурным измерениям деформаций - инж. Е.М. Перепонова; разделы 4 - 12 «Особенности проектирования оснований зданий и сооружений, возводимых: 4... на просадочных грунтах» - д-р техн. наук B.И. Крутов; 5... на набухающих грунтах» - д-р техн. наук, проф. Е.А. Сорочан; 6... на заторфованных грунтах» - канд. техн. наук П.А. Коновалов; 7... на илах»-канд. техн. наук Д.Е. Польшин; 8... на элювиальных грунтах» - д-р техн. наук, проф. В.Б. Швец, кандидаты техн. наук И.С. Швец и В.В. Павлов (ДИСИ); 9... на засоленных грунтах» - канд. техн. наук В.П. Петрухин; 10... на насыпных грунтах» - д-р техн. наук В.И. Крутов; 11... на подрабатываемых территориях»-канд. техн. наук А. И. Юшин; )2... в сейсмических районах» - д-р техн. наук В.А. Ильичев и канд. техн. наук Л.Р. Ставницер. Руководство разработано под общей редакцией: д-ра техн. наук, проф. Е.А. Сорочана, кандидатов техн. наук В.В. Михеева, М.Г. Ефремова, А.В. Вронского. Использованный в Руководстве текст главы СНиП И-15-74 выделен полужирным шрифтом и его пункты, формулы, таблицы и рисунки имеют двойную нумерацию: вначале по Руководству и затем в скобках по главе СНиП. В случае использования текста приложений к главе СНиП к номеру в скобках приписывается номер приложения. Если внутри цитированного текста главы СНиП есть ссылка на какие-либо ее пункты, то их нумерация в этом тексте сохранена по главе СНиП, а для удобства пользования в скобках приведена нумерация по Руководству. Раздел 1 ОБЩИЕ ПОЛОЖЕНИЯ 1.1. Настоящее Руководство, составленное в развитие главы СНиП II-15-74 «Основания зданий и сооружений», рекомендуется использовать при проектировании оснований промышленных, жилых и общественных зданий и сооружений всех областей строительства, В том числе городского и сельскохозяйственного, промышленного и транспортного. В Руководстве не рассматриваются вопросы проектирования оснований опор воздушных линий электропередачи и оснований мостов и водопропускных труб. 1.2(1.1). Нормы настоящей главы должны соблюдаться при проектировании оснований зданий и сооружений. Примечание. Нормы настоящей главы, кроме разд. 2 «Номенклатура грунтов оснований», не распространяются на проектирование оснований гидротехнических сооружений, дорог, аэродромных покрытий, зданий и сооружений, возводимых на вечномерзлых грунтах, а также оснований свайных фундаментов, глубоких опор и фундаментов под машины с динамическими нагрузками. 1.3(1.2). Основания зданий и сооружений должны проектироваться на основе: а) результатов инженерно-геологических и гидрогеологических изысканий и данных о климатических условиях района строительства; б) учета опыта возведения зданий и сооружений в аналогичных инженерно-геологических условиях строительства; в) данных, характеризующих возводимое здание или сооружение, его конструкции и действующие на фундаменты нагрузки, воздействия и условия последующей эксплуатации; г) учета местных условий строительства; д) технико-экономического сравнения возможных вариантов проектного решения, имея в виду необходимость принятия оптимального решения, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов (или других подземных частей конструкций) с оценкой решений по приведенным затратам. 1.4(1.3). Инженерно-геологические исследования грунтов оснований зданий и сооружений должны проводиться в соответствии с требованиями главы СНиП, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства, а также с учетом конструктивных и эксплуатационных особенностей зданий и сооружений. 1.5. Инженерно-геологические и гидрогеологические изыскания должны выполняться согласно требованиям: а) главы СНиП по инженерным изысканиям для строительства; б) «Инструкции по инженерным изысканиям для городского и поселкового строительства» СН 211-62 и «Инструкции по инженерным изысканиям для промышленного строительства» СН 225-62; в) ГОСТов на испытание грунтов: 55181-78 - Грунты. Метод лабораторного определения удельного веса 5182-78 - Грунты. Метод лабораторного определения объемного веса 5180-75 - Грунты. Метод лабораторного определения влажности 12536-67 - Грунты. Метод лабораторного определения зернового (гранулометрического) состава 5183-77 - Грунты. Методы лабораторного определения границ раскатывания и текучести 10650-72 - Торф. Метод определения степени разложения 12248-66 - Грунты. Метод лабораторного определения сопротивления срезу песчаных и глинистых грунтов на срезных приборах в условиях завершенной консолидации 12374-77 - Грунты. Метод полевого испытания статическими нагрузками 17245-71 - Грунты. Метод лабораторного определения временного сопротивления при одноосном сжатии 19912-74 - Грунты. Метод полевого испытания динамическим зондированием 20069-74 - Грунты. Метод полевого испытания статическим зондированием 20276-74 - Грунты. Метод полевого определения модуля деформации прессиометрами 23161-78 - Грунты. Метод лабораторного определения характеристик просадочности 20522-75 - Грунты. Метод статистической обработки результатов определений характеристик 1.6. Данные о климатических условиях района строительства должны применяться по указаниям главы СНиП по строительной климатологии и геофизике. 1.7. Для возможности учета при проектировании оснований опыта строительства необходимо иметь данные об инженерно-геологических условиях этого района, о конструкциях возводимых зданий и сооружений, нагрузках, типах и размерах фундаментов, давлениях на грунты основания и о наблюдавшихся деформациях оснований и сооружений. Наличие указанных данных позволит в лучшей степени оценить инженерно-геологические условия проектируемого объекта, в том числе и характеристики грунтов, выбрать наиболее рациональные типы и размеры фундаментов, их глубину заложения и т. д. 1.8. Для возможности учета местных условий строительства должны быть выявлены данные о производственных возможностях строительной организации, ее парке оборудования, ожидаемых климатических условиях на весь период устройства оснований и фундаментов, а также всего нулевого цикла. Эти данные могут оказаться решающими в вопросах выбора типа фундаментов (например, на естественном основании или свайного), глубины их заложения, метода подготовки основания и пр. 1.9. Конструктивное решение проектируемого здания или сооружения и условий последующей эксплуатации необходимо для выбора типа фундамента, учета влияния верхних конструкций на работу оснований, для уточнения требований к допустимой величине деформаций и пр. 1.10. Технико-экономическое сравнение возможных вариантов проектных решений по основаниям и фундаментам необходимо для выбора наиболее экономичного и надежного проектного решения, исключением необходимости в его последующей корректировке в процессе строительства с неизбежными при этом дополнительными затратами материальных средств и времени. 1.11(1.4). Результаты инженерно-геологических исследований грунтов должны содержать данные, необходимые для решения вопросов: выбора типа оснований и фундаментов, определения глубины сложения и размеров фундаментов с учетом прогноза возможных изменений в процессе строительства и эксплуатация инженерно-геологических и гидрогеологических условий, в том числе свойств грунтов; выбора в случае необходимости методов улучшения свойств грунтов основания; установления вида и объема инженерных мероприятий по освоению площадки строительства. 1.12(1.5). Проектирование оснований зданий и сооружений без соответствующего инженерно-геологического обоснования или при его недостаточности для решения вопросов, предусмотренных в п. 1.4 настоящей главы (п. 1.11 Рук.), не допускается. 1.13. Результаты инженерно-геологических и гидрогеологических исследований, излагаемые в отчете об изысканиях, должны содержать: а) сведения о местоположении территории предполагаемого строительства, о ее климатических и сейсмических условиях и о ранее выполненных исследованиях грунтов и грунтовых вод; б) сведения об инженерно-геологическом строении и литологическом составе толщи грунтов и о наблюдаемых неблагоприятных физико- и инженерно-геологических и других явлениях (карст, оползни, просадки и набухание грунтов, горные подработки и т. п.); в) сведения о гидрогеологических условиях с указанием высотных отметок появившихся и установившихся уровней грунтовых вод, амплитуды их колебаний и величин расходов воды; сведения о наличии гидравлических связей горизонтов вод между собой и ближайшими открытыми водоемами, а также сведения об агрессивности вод в отношении материалов конструкций фундаментов; г) сведения о грунтах строительной площадки, в которых приводится описание в стратиграфической последовательности напластований грунтов сжимаемой толщи основания. Должны быть отмечены форма залегания грунтовых образований, их размеры в плане и по глубине, возраст, происхождение и номенклатурные виды, состав и состояние грунтов, относящихся к различным номенклатурным видам; приведены для выделенных слоев грунта величины физико-механических характеристик. К числу этих характеристик относятся: удельный вес, объемный вес и влажность для всех видов грунтов; коэффициент пористости для нескальных грунтов; гранулометрический состав для крупнообломочных и песчаных грунтов; число пластичности, консистенция и удельное сопротивление пенетрации для глинистых грунтов; угол внутреннего трения, удельное сцепление и модуль деформации для всех видов нескальных грунтов; коэффициент фильтрации; коэффициент консолидации для водонасыщенных глинистых грунтов при консистенции IL>0,5, заторфованных грунтов, торфов и илов; временное сопротивление при одноосном сжатии, коэффициент размягчаемости и степень выветрелости для скальных грунтов; относительная просадочность, а также величины начального давления и начальной критической влажности для просадочных грунтов; относительное набухание, давление набухания и линейная усадка для набухающих грунтов; коэффициент выветрелости для элювиальных крупнообломочных грунтов; количественный и качественный состав засоления для засоленных грунтов и торфов; содержание растительных остатков для нескальных грунтов (степень заторфованности) и степень разложения заторфованных грунтов. В отчете обязательно указываются применяемые методы лабораторных и полевых определений характеристик грунтов. К отчету прилагаются таблицы и ведомости показателей физико-механических характеристик грунтов, схемы установок, примененных при полевых испытаниях, а также колонки грунтовых выработок и инженерно-геологические разрезы. На последних должны быть отмечены все места отбора проб грунтов и пункты полевых испытаний грунтов; д) прогноз изменения инженерно-геологических и гидрогеологических условий территории (площадки) строительства при возведении и эксплуатации зданий и сооружений. Характеристики грунтов должны быть представлены их нормативными значениями, а удельное сцепление, угол внутреннего трения, объемный вес и временное сопротивление одноосному сжатию скальных грунтов - также и расчетными значениями. Правила вычисления нормативных и расчетных значений приведены в пп. 3.49-3.65 (3.10-3.16). 1.14. Прогноз возможных изменений гидрогеологических условий площадки в процессе строительства и эксплуатации сооружений выполняется по указаниям пп. 3.105-3.112 (3.17-3.20), а учет возможных при этом изменений строительных свойств грунтов производится по указаниям пп. 3.98-3.103. Раздел 2 НОМЕНКЛАТУРА ГРУНТОВ ОСНОВАНИЙ 2.1(2.1). Грунты оснований зданий и сооружений должны именоваться в описаниях результатов изысканий, проектах оснований, фундаментов и других подземных частей зданий и сооружений согласно номенклатуре грунтов, установленной настоящим разделом норм. Наименования грунтов должны сопровождаться сведениями об их геологическом возрасте и происхождении. В необходимых случаях к наименованиям грунтов и их характеристикам, предусмотренным номенклатурой грунтов, допускается вводить дополнительные наименования и характеристики (зерновой состав глинистых грунтов, степень и качественный характер засоления грунтов, вид скальных пород, из которых образовались элювиальные грунты, подверженность атмосферному выветриванию при обнажении поверхности, крепость при разработке и т. п.), учитывающие вид и особенности строительства, а также местные геологические условия. Эти дополнительные наименования и характеристики не должны противоречить номенклатуре грунтов настоящих норм. 2.2. При описании результатов изысканий, используемых для составления проектов оснований и фундаментов всех видов зданий и сооружений, следует использовать единую систему наименований грунтов. Правильное наименование видов грунтов и определение всех характеристик их состояния необходимо для решения таких вопросов, как выбор наиболее экономичного типа фундамента, методов улучшения свойств грунтов основания, способов производства работ по устройству оснований и фундаментов и т. д. Единая система наименований видов грунтов и единая терминология для описания их состояния дает возможность более полно использовать архивные материалы ранее выполненных изысканий и тем самым уменьшить объемы изыскательских работ, а также проводить статистические обобщения для составления таблиц характеристик грунтов. 2.3. В номенклатуре отражены лишь важнейшие подразделения грунтов и характеристики, наиболее определяющие поведение грунтов под нагрузкой. В необходимых случаях разрешается вводить дополнительные подразделения грунтов и характеристики, которые, однако, не должны противоречить номенклатуре настоящего раздела. Эти дополнительные подразделения и характеристики, учитывающие вид и особенности строительства, приводятся в нормах проектирования соответствующих видов зданий и сооружений. Примеры. При разделении глинистых грунтов на виды в настоящей номенклатуре используется число пластичности и выделяются три вида глинистых грунтов: супеси, суглинки и глины. В соответствии с «Указаниями по проектированию земляного полотна железных и автомобильных дорог» (СН 449-72 глинистые грунты дополнительно подразделяются на разновидности и при этом наряду с числом пластичности используются данные зернового анализа (табл. 2.1). При этом в Указаниях подчеркивается, что в случаях расхождения вида грунта, устанавливаемого по содержанию песчаных частиц и по числу пластичности, следует принимать наименование грунта, соответствующее числу пластичности. В этих же нормах содержится классификация засоленных грунтов по степени засоления (с учетом его качественного характера), разработанная применительно к дорожному строительству и учитывающая особенности этого вида строительства. Дополнительные наименования и характеристики вечномерзлых грунтов, учитывающие особенности этих грунтов, приводятся в нормах проектирования оснований и фундаментов зданий и сооружений на вечномерзлых грунтах и т. д. 2.15. Для определения зернового (гранулометрического) состава производят ситовой анализ пробы грунта. Для песков гранулометрический состав определяют в соответствии с действующим ГОСТом. Для крупнообломочных грунтов применяется аналогичная методика, однако проба грунта увеличивается до 2-4 кгс и используются сита с большим диаметром отверстий. В инженерно-геологической практике наиболее часто применяют наименования частиц грунта в зависимости от их крупности согласно табл. 2.5. Для установления наименования грунта после рассева пробы последовательно суммируются проценты содержания частиц различной крупности. Пример. Для песчаного грунта были получены результаты гранулометрического анализа, приведенные в табл. 2.6. Суммарный состав частиц крупнее 2 мм составляет 0 %, значит песок не гравелистый; суммарный состав частиц крупнее 0,5 мм составляет 14,9 %, значит песок не крупный; суммарный состав частиц крупнее 0,25 мм составляет 55,1 %, что более 50 %, значит грунт является песком средней крупности. 2.16. Для определения степени неоднородности крупнообломочных и песчаных грунтов строят интегральную кривую гранулометрического состава (рис. 2.1). На оси абсцисс откладывают диаметры частиц в мм (для сокращения размеров графика по горизонтали рекомендуется логарифмический масштаб), а по оси ординат - процентное содержание частиц нарастающим итогом. При этом суммирование начинают с самой мелкой фракции. Определение величины U в обязательном порядке требуется для проектирования гидротехнических сооружений и дорог. Пример. На рис. 2.1 приведена интегральная кривая, построенная по данным табл. 2.6. Проведя горизонтальные прямые, соответствующие 10 и 60 %, до пересечения с кривой, получим, что d10 = 0,09 и d60 = 0,3 мм. Таким образом, (U = 3,3. Пески считают неоднородными при U>3. Рис. 2.1. интегральная кривая гранулометрического состава песка в полулогарифмическом масштабе 2.17. Крупнообломочные грунты содержат заполнитель, к которому относят частицы мельче 2 мм. Свойства крупнообломочного грунта в значительной степени зависят от вида заполнителя (песчаный или глинистый), его процентного содержания и характеристик его состояния. Вид заполнителя и характеристики его состояния необходимо указывать, если песчаного заполнителя содержится более 40%, а глинистого - более 30 %. При установлении расчетного давления на основания, сложенные крупнообломочными грунтами, допускается прочностные характеристики ( c и φ) определять по заполнителю, если его содержание превышает указанные выше величины [п. 3.187(3.54)]. При меньшем содержании заполнителя свойства крупнообломочного грунта должны устанавливаться испытаниями грунта в целом. Для установления вида заполнителя из крупнообломочного грунта удаляют частицы крупнее 2 мм. Определяют следующие характеристики заполнителя: влажность, объемный вес и коэффициент пористости, а для глинистого заполнителя - дополнительно число пластичности и показатель консистенции. Для определения объемного веса, коэффициента пористости и характеристик с и φ грунта-заполнителя отбирают пробы ненарушенного сложения из одного заполнителя. При этом для определения с и φ песчаного заполнителя в случае невозможности отбора проб ненарушенного сложения допускается формировать искусственные образцы той же плотности и влажности. 2.23. По формуле (2.3) (3) вычисляется степень влажности крупнообломочных, песчаных и глинистых грунтов. Величину удельного веса песчаных и глинистых грунтов определяют в соответствии с действующим ГОСТом. Ориентировочные значения удельных весов песчаных и глинистых грунтов, не содержащих водорастворимых солей и растительных остатков, приведены в табл. 2.9. Удельный вес крупнообломочных грунтов в целом определяют опытным путем, используя большие пикнометры, или рассчитывают в зависимости от удельных весов отдельно крупнообломочных включений и заполнителя и их процентного содержания в пробе грунта. Удельные веса крупнообломочных включений и заполнителя находят при этом опытным путем. Формулы для определения некоторых физических характеристик грунтов приведены в табл. 2.10. Показатель П, определяемый по формуле (2.9) (7), используется только для предварительного отнесения грунтов к просадочным. Деформации просадки учитываются при величине относительной просадочности δпр≥0,01. Значения П, приведенные в табл. 2.17(10), для отдельных регионов могут быть уточнены на основе статистической обработки массовых данных. 2.41. Выделение просадочных грунтов может быть произведено в полевых условиях по результатам статического зондирования, если предварительно установлена взаимосвязь данных зондирования и прямых испытаний грунтов на просадочность в компрессионных приборах. Для оценки просадочных грунтов по результатам статического зондирования определяют коэффициент снижения прочности грунта при замачивании Kз, вычисляемый по формуле: 2.51. Содержание легкорастворимых солей определяют с помощью водной вытяжки, содержание среднерастворимых солей - солянокислой вытяжки. Указанные вытяжки выполняются на образцах грунта, доведенного до абсолютно сухого состояния, поэтому для определения засоленности не требуется сохранения природной влажности образцов. Ниже приводятся основные положения методик получения водной и солянокислой вытяжек. Водная вытяжка. Отбирают среднюю пробу грунта (300-500 гс), растирают его и просеивают через сито 1 мм. Определяют гигроскопическую влажность грунта. Отбирают «среднюю аналитическую пробу» - 50 или 100 гс (в зависимости от качественно-количественной пробы на Cl- и SO42-). К навеске прибавляют пятикратное (1:5) количество дистиллированной воды, лишенной СО2 (если в грунте содержится большое количество сульфата натрия, то лучше приготовить вытяжку 1:10). Смесь взбалтывают в течение 5 мин, после чего вытяжку полностью отфильтровывают через фильтр из плотной бумаги. Солянокислая вытяжка. Из воздушно-сухого, грунта, просеянного через сито 0,25 мм, берут навеску 2,5 гс из расчета на абсолютно сухой вес. Разрушают карбонаты крепкой соляной кислотой (1:1). Замачивают навеску 125 см3 соляной кислоты 0,2 н. концентрации (соотношение грунта к кислоте 1:50), тщательно перемешивают и оставляют стоять в течение 12 ч. Затем раствор отфильтровывают в мерную колбу (250 мл). Остаток на фильтре промывают соляной кислотой (0,2 н.) до отрицательной реакции на Ca2+ и SO42-. Фильтр с осадком прокаливают в тигле и определяют силикатную часть грунта. Фильтрат в колбе доливают до отметки дистиллированной водой и используют для дальнейших определений. Анализ водной вытяжки производят по общепринятым методикам с определением величины сухого остатка, рН и содержания ионов CO32-, HCO3-, Cl-, SO42-, Ca2+, Mg2+, Na+, K+ в мг-экв на 100 гс породы или в процентах к весу породы. С целью получения ориентировочного представления о качественном и количественном составе легкорастворимых солей результаты анализа ионного состава вытяжки могут быть пересчитаны на гипотетические соли. По результатам анализа солянокислой вытяжки определяют содержание сульфат-, кальций- и магний-ионов в процентах к весу абсолютно сухого грунта, что дает возможность определить количество среднерастворимых солей (гипса, ангидрита). 2.52. Определение физических свойств засоленных грунтов следует выполнять по методикам, учитывающим особенности их свойств. Удельный вес засоленных грунтов определяют с использованием инертной жидкости (керосина вместо дистиллированной воды) и вакуумирования (вместо кипячения). При определении зернового (гранулометрического) состава необходимо производить предварительную отмывку засоленного грунта водой до полного удаления водорастворимых солей, вызывающих коагуляцию, или применять пирофосфорнокислый натрий (5%-ный водный раствор Na2 P2 O7). Определение влажности загипсованных грунтов (содержащих кристаллизационную воду) должно производиться в соответствии с действующим ГОСТом. 2.53.(2.18). Все виды грунтов, имеющие отрицательную температуру и содержащие в своем составе лед, относятся к мерзлым грунтам, а если они находятся в мерзлом состоянии в течение многих лет (от трех и более), то - к вечномерзлым. Наименование видов мерзлых и вечномерзлых грунтов определяют после их оттаивания по номенклатуре настоящей главы. Дополнительные характеристики мерзлых и вечномерзлых грунтов определяют в соответствии с главой СНиП по проектированию оснований и фундаментов на вечномерзлых грунтах. 2.54(2.19). Данные исследования песчаных и глинистых грунтов должны содержать сведения о наличии растительных остатков, если относительное их содержание по весу в песчаном грунте q>0,03, а в глинистом - q>0,05. Относительное содержание q растительных остатков в грунте (степень заторфованности) определяется как отношение их веса в образце грунта, высушенного при температуре 100-105° С, к его весу. В зависимости от величины q грунтам присваиваются дополнительные наименования согласно табл. 2.20(12). Заторфованные грунты характеризуются также степенью разложения, которая показывает содержание в общем объеме пробы заторфованного грунта продуктов распада растительных тканей. 2.64. Закрепление грунтов применяют с целью повышения несущей способности основания, снижения сжимаемости, ликвидации просадочных свойств, усиления оснований фундаментов существующих зданий я сооружений, создания противофильтрационных завес. Для установления возможности закрепления грунта и выбора способа закрепления помимо установления наименования грунта в соответствии с настоящей номенклатурой определяют следующие показатели: гранулометрический состав; коэффициент пористости; коэффициент фильтрации (с использованием трубки Каменского); степень карбонатности; химический состав водной вытяжки; химический состав грунтовых вод. Для получения необходимых для проектирования данных проводят испытания закрепленного грунта. При этом определяют: предел прочности на сжатие, водостойкость, а в необходимых случаях также фильтрационные свойства. Справочные данные о прочности закрепленных грунтов в зависимости от их вида и коэффициента фильтрации приведены в табл. 2.23. 2.65. Уплотнение грунтов применяют с целью увеличения их несущей способности, снижения сжимаемости, ликвидации просадочных свойств, ускорения процесса, консолидации водонасыщенных слабых глинистых грунтов. Уплотненные грунты подразделяются по методам уплотнения, в качестве которых применяют: укатку, трамбование, вибрирование, взрыв, огрузку (в том числе с использованием песчаных дрен). Вид грунта и характеристики его состояния до уплотнения определяют в соответствии с настоящей номенклатурой. Эти данные используют для выбора метода уплотнения грунта и типа грунтоуплотняющих машин и механизмов. Уплотненные грунты характеризуются плотностью сложения после уплотнения, а в необходимых случаях также прочностными и деформационными характеристиками. Плотность сложения уплотненных грунтов устанавливают путем отбора проб из уплотненного грунта без нарушения его структуры, а также зондированием и радиоизотопными методами. ОБЩИЕ УКАЗАНИЯ 3.1(3.1). При проектировании оснований зданий и сооружений необходимо учитывать, что деформации оснований не должны превышать предельно допустимых размеров для нормальной эксплуатации, а несущая способность должна быть достаточной, чтобы не происходили потеря устойчивости или разрушение основания. 3.2(3.2). Проектирование оснований (в соответствии с требованиями п. 1.2) (п. 1.2 Рук.) должно производиться по результатам обоснованного расчетом выбора: типа основания (естественное, искусственно уплотненное, химически или термически закрепленное и др.); типа, конструкции, размеров и материала фундаментов (ленточные, плитные, столбчатые, железобетонные, бетонные, бутобетонные и др., мелкого или глубокого заложения, свайные фундаменты, глубокие опоры и др.); мероприятий, указанных в пп. 3.83-3.89 настоящей главы (пп. 3.332-3.339 Рук.), применяемых при необходимости уменьшения влияния деформаций оснований на эксплуатационную пригодность зданий и сооружений. 3.3. Проектирование оснований является неотъемлемой составной частью проектирования зданий и сооружений в целом. Статическая схема здания (сооружения), его конструктивное и объемно-планировочное решение, плановая и высотная привязка должны приниматься с учетом инженерно-геологических условий площадки строительства и технически возможных решений фундаментов. 3.4.(3.3). Основания должны рассчитываться по двум группам предельных состояний: по первой группе - по несущей способности; по второй группе - по деформациям (осадкам, прогибам и пр.), создающим препятствия для нормальной эксплуатации зданий и сооружений. По несущей способности основания рассчитываются в случаях, указанных в п. 3.4 настоящей главы (п. 3.289 Рук.), и по деформациям, когда основания сложены нескальными грунтами. При расчете по предельным состояниям ожидаемые деформации и несущая способность основания сопоставляются с предельно допустимыми деформациями и минимально необходимой несущей способностью, определяемыми с учетом особенностей конструкций зданий и сооружений, методов их возведения и других факторов. 3.5 К первой группе предельных состояний основания относятся: потеря устойчивости формы и положения; хрупкое, вязкое или иного характера разрушение; разрушение под совместным воздействием силовых факторов и неблагоприятных факторов внешней среды; резонансные колебания; чрезмерные пластические деформации или деформации ползучести. Ко второй группе предельных состояний основания относятся состояния, затрудняющие нормальную эксплуатацию конструкций или снижающие их долговечность вследствие появления недопустимых перемещений (прогибов, осадок, углов поворота), колебании, трещин и т. п. 3.6. Целью расчета по первому предельному состоянию является обеспечение несущей способности и ограничение развития чрезмерных пластических деформаций оснований с учетом возможных неблагоприятных условий их работы в период строительства и эксплуатации зданий и сооружений. Целью расчета по второму предельному состоянию является ограничение деформаций или перемещений (в том числе колебаний) конструкций и оснований в целях обеспечения нормальной эксплуатации зданий и сооружений. 3.7. Сооружение и его основание должны рассматриваться в единстве и, поскольку основание лишь косвенно влияет на условия эксплуатации сооружения через посредство возведенных на нем конструкций, состояние основания можно считать предельным лишь в случае, если оно влечет за собой переход конструкций сооружения в одно из предельных состояний. 3.8. При проектировании необходимо учитывать, что потеря несущей способности основания, как правило, приводит конструкции сооружения в предельное состояние первой группы. При этом предельные состояния основания и конструкций сооружения совпадают. Деформации же основания могут привести конструкции сооружения в предельное состояние как второй, так и первой группы. Поэтому деформации основания должны лимитироваться как прочностью, устойчивостью и трещиностойкостью конструкций, так и архитектурными и технологическими требованиями, предъявляемыми к сооружению или размещенному в нем оборудованию. 3.9.(3.3.). В расчетах оснований в необходимых случаях следует учитывать совместное действие силовых факторов и неблагоприятных влияний внешней среды (например, влияние атмосферных или грунтовых вод на физико-механические характеристики грунтов и др.). Необходимо, кроме того, учитывать влияние на свойства грунтов изменения температурного режима грунтов за счет климатических воздействий, влияния тепловых источников и т. п. К изменению влажностного режима особо чувствительны просадочные, набухающие и засоленные грунты, к изменению температурного режима - набухающие и пучинистые грунты. 3.10(3.5). Расчетная схема системы сооружение - основание или фундамент - основание должна выбираться с учетом наиболее существенных факторов, определяющих напряженное состояние и деформации основания и конструкции сооружения (статической схемы сооружения, характера напластований и свойств грунтов основания, особенностей возведения и т. д.). В необходимых случаях должны учитываться пространственная работа конструкций, геометрическая и физическая нелинейность, анизотропность, пластические и реологические свойства материалов и грунтов, а также возможность их изменения в процессе строительства и эксплуатации сооружений. 3.11. При выборе расчетной схемы системы сооружение - основание или фундамент - основание, т. е. совокупности упрощающих предположений относительно геометрической схемы конструкции, свойств материалов и грунтов, характера взаимодействия конструкции с основанием, включая схематизацию возможных предельных состояний, должны учитываться наиболее существенные факторы, оказывающие влияние на совместную работу сооружения, фундамента и основания. Для одного и того же сооружения расчетная схема может меняться в зависимости от вида предельного состояния, цели расчета, вида учитываемых воздействий, разработанности методов расчета и т. д. Примеры выбора расчетной схемы сооружение - основание. Для каркасно-панельного здания повышенной этажности, проектируемого для строительства в геологических условиях, где в верхней зоне основания залегают пылеватые пески и суглинки с модулем деформации E = 150-200 кгс/см2, подстилаемые известняками с модулем деформации E = 1200 кгс/см2, фундамент принят в виде коробчатой железобетонной плиты (рис. 3.1, а). При расчете несущих конструкций здания на ветровые нагрузки в качестве расчетной схемы в данном случае обычно принимается многоэтажная рама, стойки которой имеют жесткую заделку в уровне верха фундаментной плиты (рекомендуется при этом учитывать податливость основания на поворот). При определении усилий в конструкции расчетная схема принимается в виде плиты конечной жесткости на линейно-деформируемом слое конечной толщины. При определении крена плиты жесткость можно принять бесконечно большой. При определении средней осадки плиты, осадок отдельных ее точек, а также при расчете несущей способности основания допускается пренебречь жесткостью плиты и считать нагрузку на основание распределенной по линейному закону. Для расчета конструкций протяженного крупнопанельного жилого дома, имеющего в основании напластования грунтов с ярко выраженной неравномерной сжимаемостью (рис. 3.1,б), целесообразно принять расчетную схему в виде равномерно загруженной балки конечной жесткости на основании с переменным коэффициентом жесткости (см. «Указания по проектированию конструкций крупнопанельных жилых домов» СН 321-65. М., Стройиздат, 1966). Рис. 3.1. Схемы зданий и геологические разрезы для выбора расчетной схемы системы «здание - основание» а - здание повышенной этажности с фундаментом в виде сплошной железобетонной плиты на основании с переменной сжимаемостью по глубине; б - протяженное здание с ленточными фундаментами на основании с переменной сжимаемостью в плане 3.12. Нелинейность деформирования грунтов рекомендуется учитывать в расчетах конструкций пространственно жестких зданий и сооружений во взаимодействии со сжимаемым основанием, в особенности при значительных ожидаемых неравномерных деформациях основания первого и второго вида [п. 3.163 (3.44)]. При этом допускается использовать упрощенные методы, в которых, в частности, фундаменты сооружения рассматриваются как отдельные нелинейно-деформирующиеся опоры. Зависимость осадки основания таких опор от давления р рекомендуется принимать в виде: где S1 - расчетная осадка основания при давлении p1, не превышающем расчетного давления на основание [пп. 3.178-3.217 (3.50-3.62)], определяемая по указаниям пп. 3.226-3.246 (1-10 прил. 3); pпр - давление на основание, соответствующее исчерпанию несущей способности основания [п. 3.292 (3.73)]. Расчет зданий и сооружений во взаимодействии с нелинейно-деформирующимся основанием следует выполнять с применением ЭВМ. 3.13. Развитие деформаций грунтов основания во времени (консолидационное уплотнение, ползучесть), а также анизотропию прочностных и деформационных характеристик грунтов следует учитывать, как правило, при расчете оснований, сложенных водонасыщенными заторфованными грунтами и илами (см. разделы 6 и 7 настоящего Руководства). НАГРУЗКИ, УЧИТЫВАЕМЫЕ В РАСЧЕТАХ ОСНОВАНИЙ 3.14(3.6). Нагрузки и воздействия на основания, передаваемые фундаментами зданий и сооружений или их отдельных элементов, как правило, должны устанавливаться расчетом исходя из рассмотрения совместной работы здания (сооружения) и основания или фундамента и основания. Учитываемые при этом нагрузки и воздействия на здание (сооружение) или отдельные его элементы, а также возможные их сочетания должны приниматься согласно требованиям главы СНиП по нагрузкам и воздействиям. 3.15. При проектировании оснований следует учитывать, что сооружение и основание находятся в тесном взаимодействии. Под влиянием нагрузок от фундаментов основание деформируется, а это в свою очередь вызывает перераспределение нагрузок за счет включения в работу надфундаментных конструкций. Характер и степень перераспределения нагрузок на основание, а следовательно, и величины дополнительных усилий в конструкциях сооружения, зависят от вида, состояния и свойств грунтов, характера их напластования, статической схемы сооружения, его пространственной жесткости и многих других факторов. 3.16(3.6). Нагрузки на основание допускается определять без учета их перераспределения надфундаментной конструкцией и принимать в соответствии со статической схемой здания или сооружения: а) при расчете оснований зданий и сооружений III-IV классов; б) при проверке общей устойчивости массива грунта основания совместно с рассматриваемым зданием или сооружением; в) при расчете по деформациям в случаях, оговоренных в п. 3.45 настоящей главы (п. 3.167 Рук.). Указанные допущения относятся к сооружениям, жесткость которых невелика (и потому несущественно влияет на распределение нагрузок на основание), а также к случаям, когда учет жесткости сооружения при существующих методах расчета очень мало сказывается на их результатах. 3.17. Основными характеристиками нагрузок являются их нормативные величины, устанавливаемые главой СНиП по нагрузкам и воздействиям. Все расчеты оснований должны производиться на расчетные значения нагрузок, которые определяются как произведение нормативных нагрузок на коэффициент перегрузки n, учитывающий возможное отклонение нагрузок в неблагоприятную сторону от нормативных значений и устанавливаемый в зависимости от группы предельного состояния. Коэффициент перегрузки n принимается: при расчете оснований по первой группе предельных состояний (по несущей способности) по указаниям главы СНиП II-6-74; при расчете оснований по второй группе предельных состояний (по деформациям) - равным единице. 3.18. В зависимости от продолжительности действия нагрузки подразделяются на постоянные и временные. Постоянными считаются нагрузки, которые при строительстве и эксплуатации сооружения действуют постоянно (собственный вес конструкций и грунтов, горное давление и т. п.). Временными считаются нагрузки, которые в отдельные периоды строительства и эксплуатации могут отсутствовать. Временные нагрузки в свою очередь подразделяются на: длительные (например, вес стационарного оборудования, нагрузка на перекрытиях в складских помещениях, зернохранилищах, библиотеках и т. п.); кратковременные, которые могут действовать лишь в отдельные периоды времени (вес людей и ремонтных материалов в зонах обслуживания и ремонта; нагрузки, возникающие при изготовлении, перевозке и возведении конструкций; снеговые, ветровые и гололедные нагрузки и т. п.); особые, возникновение которых возможно лишь в исключительных случаях (сейсмические, аварийные и т. п.). 3.19. В зависимости от состава учитываемых нагрузок различаются: основные сочетания нагрузок, состоящие из постоянных, длительных и кратковременных нагрузок; особые сочетания нагрузок, состоящие из постоянных, длительных, возможных кратковременных и одной из особых нагрузок. 3.20(3.7). Расчет оснований по деформациям должен производиться на основное сочетание нагрузок. Расчет оснований по несущей способности выполняется на основное сочетание нагрузок и при наличии особых нагрузок и воздействий - на основное и особое сочетание. При наличии нескольких кратковременных нагрузок последние должны вводиться с коэффициентами сочетаний, а кратковременные нагрузки на перекрытия многоэтажных зданий - с понижающими коэффициентами, учитывающими вероятность одновременного загружения перекрытий, в соответствии с требованиями главы СНиП по нагрузкам и воздействиям. При этом нагрузки на перекрытия зданий и снеговые нагрузки, которые согласно СНиП по нагрузкам и воздействиям могут относиться как к длительным, так и кратковременным, при расчете оснований по несущей способности считаются кратковременными, а при расчете по деформациям - длительными. Нагрузки от подвижного подъемно-транспортного оборудования в обоих случаях считаются кратковременными. 3.21(3.8). В расчетах оснований необходимо учитывать нагрузки от складируемого материала и оборудования, размещаемых вблизи фундаментов на отмостках и полах, устраиваемых непосредственно на грунте. Эти нагрузки принимаются по всей фактической площади загружения. Нагрузки на полы, отмостки и т. д. учитываются: при сопоставлении фактических давлений на заданном уровне (по подошве фундамента, на кровле слоя и т. д.) с величиной расчетного давления на основание по пп. 3.178-3.218 (3.50-3.62), при определении деформаций оснований (осадок, кренов) по пп. 3.226-3.264 (1-12 прил. 3), а также при расчете оснований по несущей способности по п. 3.306 (3.79). 3.22(3.8). Усилия в конструкциях, вызываемые температурными воздействиями, при расчете оснований по деформациям, как правило, не должны учитываться. При этом имеются в виду температурные климатические воздействия. Технологические температурные воздействия учитываются в расчетах оснований по деформациям при соответствующем обосновании в зависимости от продолжительности этих воздействий. 3.23(3.9). Нагрузки и воздействия при расчете оснований опор мостов и водопропускных труб должны приниматься в соответствии с требованиями главы СНиП по проектированию мостов и труб. НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ЗНАЧЕНИЯ ХАРАКТЕРИСТИК ГРУНТОВ 3.24(3.10). Основными параметрами механических свойств грунтов, определяющими несущую способность оснований и их деформации, являются прочностные и деформационные характеристики грунтов (угол внутреннего трения φ, удельное сцепление с и модуль деформации нескальных грунтов Е, временное сопротивление одноосному сжатию скальных грунтов R c и т. п.). В отдельных случаях проектирования оснований, для которых не разработаны соответствующие методы расчета, базирующиеся на прочностных и деформационных характеристиках грунтов, допускается применять другие параметры, характеризующие взаимодействие фундаментов с грунтом оснований и установленные опытным путем (удельные силы пучения при промерзании, коэффициенты жесткости основания и пр.). Примечание. В дальнейшем тексте настоящей главы, за исключением специально оговоренных случаев, под термином «характеристики грунтов» будут пониматься не только механические, но и физические характеристики грунтов, а также упомянутые в настоящем пункте параметры. МЕТОДЫ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИОННЫХ И ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК ГРУНТОВ 3.25. Модуль деформации грунтов оснований зданий и сооружений рекомендуется определять в полевых условиях загружением штампа статическими нагрузками. Этот метод является наиболее достоверным и пригоден для нескальных грунтов всех видов. Методику проведения и обработки результатов испытания следует принимать в соответствии с действующим ГОСТом. 3.26. Модули деформации песчаных и глинистых грунтов могут быть определены испытанием их с помощью прессиометра в скважинах с последующей корректировкой опытных данных. Корректировка данных прессиометрии должна осуществляться, как правило, путем сопоставления их с результатами параллельно проводимых испытаний того же грунта штампом. Параллельные испытания обязательны при использовании метода прессиометрии для сооружений I класса. Для сооружений II-IV классов допускается корректировать данные прессиометрии с помощью расчетной формулы или поправочных коэффициентов. Методику прессиометрических испытаний и обработки результатов, опытов, а также их последующую корректировку следует принимать по указаниям действующего ГОСТа. (3.22) (14 прил. 1) 3.58 (3.15). Доверительная вероятность α расчетных значений характеристик грунтов принимается равной: при расчетах оснований по несущей способности α = 0,95; при расчетах оснований по деформациям α = 0,85. Доверительная вероятность α для расчета оснований мостов и водопропускных труб принимается согласно указаниям п. 14.4 настоящей главы. При соответствующем обосновании на основе согласованного решения проектной и изыскательской организаций для сооружений I класса допускается принимать большую доверительную вероятность расчетных значений характеристик грунтов, но не выше 0,99. Примечания : 1. Расчетные значения характеристик грунтов, соответствующие различным значениям доверительной вероятности, должны приводиться в отчетах по инженерно-геологическим изысканиям. 2. Под доверительной вероятностью α понимается вероятность того, что истинное среднее значение характеристики не выйдет за пределы нижней (или верхней) границы одностороннего доверительного интервала. 3. Расчетные значения характеристик грунта с, φ и γ для расчетов по несущей способности обозначаются с I , φ I и γ I , а для расчетов по деформациям - с II , φ II и γ II . Проектирующая организация должна указывать в своем задании изыскательской организации величины доверительной вероятности, при которых необходимо вычислять расчетные значения характеристик грунтов. Вычисление нормативных и расчетных значений прочностных и деформационных характеристик грунтов по результатам определения их физических характеристик 3.60(3.16). Для предварительных расчетов оснований зданий и сооружений всех классов, а также для окончательных расчетов оснований зданий и сооружений II-IV классов и опор воздушных линий электропередачи и связи независимо от их класса допускается определение нормативных и расчетных значений прочностных и деформационных характеристик грунтов по их физическим характеристикам, если статистической обработкой массовых испытаний грунтов установлены зависимости между механическими (прочностными и деформационными) и физическими характеристиками грунтов. Примечания : 1. В расчетах по деформациям оснований указанных зданий и сооружений нормативные значения угла внутреннего трения φ, удельного сцепления с и модуля деформации Е допускается принимать по таблицам, приведенным в прил. 2 (табл. 3.12-3.14 Рук.) «Таблицы нормативных значений прочностных и деформационных характеристик грунтов», причем расчетные значения принимают в этом случае при k г = 1 (равными нормативным). 2. Для отдельных районов допускается вместо таблиц прил. 2 (табл. 3.12-3.14 Рук.) пользоваться согласованными с Госстроем СССР таблицами характеристик грунтов, специфических для этих районов. При использовании значений с и φ из табл. 3.12 (1 прил. 2) и 3.13 (2 прил. 2) для определения расчетного давления на основание в формулу (3.38) (17) вводится коэффициент надежности kн = 1,1. 3.61. В расчетах оснований по несущей способности нормативные и расчетные значения угла внутреннего трения φ и удельного сцепления с должны определяться, как правило, на основе непосредственных испытаний грунтов. Для оснований зданий и сооружений, указанных в п. 3.60(3.16), допускается принимать нормативные значения с и φ по табл. 3.12 (1 прил. 2)-3.13 (2 прил. 2), причем расчетные значения принимают в этом случае при следующих значениях коэффициента безопасности kг: для с песчаных и глинистых грунтов - 1,5; для φ песчаных грунтов - 1,1; для φ глинистых грунтов - 1,15. 3.62(9 прил. 1). Физические характеристики, необходимые для пользования таблицами (например, коэффициент пористости е, показатель консистенции I L и др.), должны быть получены на основе непосредственных определений. 3.63(10 прил. 1). Для установления нормативных и расчетных значений прочностных и деформационных характеристик грунтов используется нормативное значение физических характеристик, вычисляемое по формуле (3.6) (1 прил. 1). Количество определений характеристик грунтов 3.64(11 прил. 1). Число частных определений n для вычисления нормативных и расчетных значений характеристик грунтов зависит в общем случае от степени неоднородности грунтов основания, требуемой точности вычисления характеристики и вида здания (сооружения) и устанавливается программой исследований. Следует назначать число определений характеристик по формуле (3.23) или по графику, приведенному на рис. 3.4: Рис.3.4. График зависимости числа определений n от коэффициента вариации v при различных значениях ρ Минимальное количество определений удельного сцепления с и угла внутреннего трения φ в полевых условиях (п. 3.33) должно составлять 3. При вычислении расчетных значений с и φ на основе полевых данных допускается принимать коэффициент безопасности kг = 1,5 для с и kг = 1,1 для φ. Минимальное количество частных определений физических характеристик, необходимых для пользования таблицами прочностных и деформационных характеристик [пп. 3.60(3.16)-3.61], должно составлять для каждого выделенного инженерно-геологического элемента 6 при расчетах оснований по второму предельному состоянию и 10 - при расчетах по первому предельному состоянию. Примечание : Количество частных определений характеристик грунтов допускается уменьшить при наличии одноименных определений в материалах предыдущих изысканий, выполненных на той же площадке для того же инженерно-геологического элемента. Таблицы нормативных значений прочностных и деформационных характеристик грунтов 3.66(1 прил. 2). Характеристики грунтов, приведенные в табл. 1-3 настоящего приложения (табл. 3.12-3.14 Рук.), допускается использовать в расчетах по деформациям оснований зданий и сооружений, указанных в примеч. 1 к п. 3.16 настоящей главы (п. 3.60 Рук.), при коэффициенте безопасности kг = 1, а также для расчетов оснований опор воздушных линий электропередачи и опор открытых распределительных устройств по п. 13.2 настоящей главы. Характеристики грунтов, приведенные в табл. 3.12 (1 прил. 2) и 3.13 (2 прил. 2), допускается использовать также в расчетах оснований по несущей способности при коэффициентах безопасности, приведенных в п. 3.61. 3.67(2 прил. 2). Характеристики песчаных грунтов в табл. 3.12 (1 прил. 2) относятся к кварцевым пескам с зернами различной окатанности, содержащим не более 20% полевого шпата и не более 5% в сумме различных примесей (слюда, глауконит и пр.), включая растительные остатки, независимо от степени влажности G. 3.68(3 прил. 2). Характеристики глинистых грунтов в 3.13 (2 прил. 2) и 3.14 (3 прил. 2) относятся к грунтам, содержащим не более 5% растительных остатков и имеющим степень влажности G≥0,8. Таблица 3.12(1 прил. 2) Нормативные значения удельных сцеплений сн, кгс/см2, углов внутреннего трения φн, град, и модулей деформации Е, кгс/см2, песчаных грунтов (независимо от происхождения, возраста и влажности) 3.69(4 прил. 2). Для песчаных и глинистых грунтов с промежуточными значениями е против указанных в табл. 3.12 (1 прил. 2)-3.14 (3 прил. 2) допускается определять величины сн, φн и Е, пользуясь интерполяцией. 3.70(5 прил. 2). Для песчаных и глинистых грунтов при значениях е, а для глинистых грунтов и при значениях G и IL, выходящих за пределы, предусмотренные в табл. 3.12 (1 прил. 2)-3.14 (3 прил. 2), значения характеристик грунтов сн, φн и Е надлежит определять по данным инженерно-геологических исследований. 3.71(8 прил. 2). При значениях е для песчаных и глинистых грунтов, а также G и IL, для глинистых грунтов, меньших, чем их нижние пределы, предусмотренные табл. 3.12 (1 прил. 2)-3.14 (3 прил. 2), характеристики сн, φн и Е в запас надежности допускается принимать по соответствующим нижним пределам е, G и IL. Однако с целью достижения более экономичных решений оснований и фундаментов в этих случаях характеристики грунтов сн, φн и Е рекомендуется определять по данным инженерно - геологических исследований. Таблица 3.13(2 прил. 2) Нормативные значения удельных сцеплений сн, кгс/см2, и углов внутреннего трения φн, град, глинистых грунтов четвертичных отложений Определение характеристик грунта с учетом возможного изменения его влажности в процессе строительства и эксплуатации 3.98. Характеристики грунтов, необходимые для проектирования оснований (модуль деформации Е, удельное сцепление с и угол внутреннего трения φ), определяют, как правило, для того состояния грунта, в котором он находится в природном залегании. При проектировании оснований, сложенных не полностью водонасыщенными (G<0,8) глинистыми грунтами и пылеватыми песками, следует учитывать возможность снижения их прочностных и деформационных характеристик вследствие повышения влажности грунтов в процессе строительства и эксплуатации сооружения. 3.99. Повышение влажности грунтов может происходить в результате: а) подъема уровня грунтовых вод, прогнозируемого согласно указаниям пп. 3.105-3.116 (3.17-3.22); б) накопления влаги за счет нарушения природных условий ее испарения вследствие застройки и асфальтирования территории. 3.100. Характеристики с, φ и Е для грунтов, расположенных ниже прогнозируемого уровня грунтовых вод, должны устанавливаться путем испытаний грунтов в условиях полного водонасыщения. 3.101. Повышение влажности грунтов вследствие застройки и асфальтирования территории следует учитывать для всех видов зданий и сооружений. При этом прогноз изменения влажности необходимо давать на основе специальных расчетов или опытных данных по измерению влажности грунтов данного района под уже застроенной территорией. Характеристики с, φ и Е в этом случае следует определять при прогнозируемой влажности. При отсутствии указанных данных допускается принимать с, φ и Е по результатам испытания грунта в состоянии природной влажности, если последняя больше влажности на границе раскатывания, или при влажности на границе раскатывания, если W≤W P. 3.102. Для определения прочностных характеристик грунтов с и φ в соответствии с рекомендациями пп. 3.100 и 3.101 образцы грунтов предварительно насыщаются водой до значений влажности, указанных в пп. 3.100 и 3.101. При определении модуля деформации в полевых условиях допускается проводить испытание грунта при природной влажности с последующей корректировкой полученного значения модуля деформации на основе компрессионных испытаний. Для этого проводятся параллельные компрессионные испытания грунта природной влажности и грунта, предварительно водонасыщенного до требуемого значения влажности. Полученный в лабораторных опытах коэффициент снижения модуля деформации грунта при его дополнительном водонасыщении используется для корректировки полевых данных. 3.103. При определении характеристик просадочных, набухающих и засоленных грунтов следует учитывать дополнительные рекомендации, изложенные в разделах 4, 5 и 9 настоящего Руководства. ГРУНТОВЫЕ ВОДЫ 3.104. Положение уровня грунтовых вод и возможность его изменения в период строительства и эксплуатации возводимых зданий и сооружений влияют на выбор: типа фундаментов, их размеров, глубины заложения, водозащитных мероприятий и пр. При повышении уровня грунтовых вод могут изменяться деформационные и прочностные свойства глинистых грунтов основания, возникать просадка или набухание грунта, увеличиваться степень морозной пучинистости и пр. При понижении уровня грунтовых вод могут возникать дополнительные осадки как глинистых, так и песчаных грунтов. Прогнозирование изменения уровня грунтовых вод следует выполнять согласно указаниям пп. 3.105-3.113 (3.17-3.20), а оценку изменения гидрогеологических условий на свойства грунта - по пп. 3.98-3.103. 3.105(3.17). При проектировании оснований должны учитываться как сезонные и многолетние колебания уровня грунтовых вод (и верховодки), так и возможность формирования нового повышенного или пониженного среднего уровня. При этом следует учитывать возможность образования нового техногенного горизонта, т. е. горизонта, сформировавшегося в результате строительства и эксплуатации предприятий, зданий и сооружений. 3.106. Техногенное повышение уровня грунтовых вод или образование техногенного водоносного горизонта (в том числе и верховодки) определяется действием факторов подтопления: активных - непосредственно вызывающих подтопление (например, инфильтрации утечек или поверхностных вод); пассивных - не вызывающих подтопления непосредственно, но способствующих его возникновению и развитию (например, нарушение поверхностного стока, гидрогеологические условия и т. п.). Классификация факторов подтопления и характер их действия приведены на рис. 3.5. Основными факторами подтопления являются: при строительстве - изменение условий поверхностного стока при вертикальной планировке, засыпке естественных дрен, производстве земляных работ, длительный разрыв между выполнением земляных работ нулевого цикла и строительными работами (закладкой фундаментов, прокладкой коммуникаций и т. п.); при эксплуатации - инфильтрация утечек производственных вод, уменьшение испарения под зданиями и покрытиями, полив зеленых насаждений и т. п. Рис. 3.5. Классификация факторов подтопления застраиваемых территорий 3.107. Неподтопляемыми территориями являются такие, на которых вследствие благоприятных природных условий (наличия естественного дренирования, наличия хорошо проницаемых грунтов большой мощности и глубокого залегания водоупора и т. п.) или при ограниченном количестве потребляемой предприятием воды заметного увлажнения грунтов оснований и повышения уровня грунтовых вод не происходит или оно не отражается на нормальных условиях эксплуатации заглубленных конструкций зданий и сооружений. Неподтопляемыми также следует считать территории, на которых возникает кратковременное повышение уровня грунтовых вод или образуется временная верховодка (например, при повышенном количестве атмосферных осадков). На неподтопляемых территориях расходные статьи водного баланса преобладают над приходными. Подтопляемыми территориями являются такие застроенные или застраиваемые территории, в пределах которых происходит постоянное и направленное изменение водного режима в сторону накопления подземных вод и нарушения условий, необходимых для нормальной эксплуатации заглубленных строительных конструкций и помещений. На подтопляемых территориях приходные статьи водного баланса преобладают над расходными. 3.108(3.18). Возможные изменения уровня грунтовых вод следует прогнозировать в зависимости от геологических и гидрогеологических условий строительной площадки, характера возводимых зданий и сооружений и наличия в них мокрого технологического процесса, а также технических мероприятий, осуществляемых в процессе строительства и эксплуатации (отрывка котлованов, планировка территорий, устройство и эксплуатация дренажных, водопроводных, канализационных, теплофикационных сетей и т. п.). 3.109(3.19). При прогнозировании изменения уровня грунтовых вод следует учитывать наибольшую вероятность: а) значительного его повышения: там, где возводятся здания и сооружения с мокрым технологическим процессом; если в районе застройки или вблизи него устраиваются водоподпорные сооружения; когда строительная площадка сложена маловодопроницаемыми глинистыми грунтами, а также пылеватыми песками, вне зависимости от глубины залегания водоупора; б) его понижения: там, где на застраиваемой или соседней территории устраиваются мелиоративные осушительные сооружения (каналы, дренажные устройства и пр.) или выполняются подземные выработки (тоннели, метро, горные подработки и др.). 3.110. При прогнозировании изменения уровня грунтовых вод в связи с выбором безопасного для зданий и сооружений его положения следует на основе анализа материалов изысканий выявлять режимообразующие факторы или их комплексы, вызывающие повышение уровня или его понижение. При этом в первом случае выделяется тип искусственного режима грунтовых вод - подпитывающий (инфильтрационно-термический), во втором - водоотборный. В обоих случаях - при питании и водоотборе - выделяются виды режима по характеру распространения (распределения по территории застройки) действия факторов по площади: равномерное, неравномерное, сплошное или несплошное, линейное, локальное и т. д. Для каждого из этих видов режима выделяются подвиды в зависимости от действия факторов во времени - систематический, периодический и эпизодический. При прогнозировании уровня грунтовых вод следует учитывать, что повышение его может происходить как на площадках, застроенных предприятиями с «мокрым» технологическим процессом, так и на площадках с «сухим» технологическим процессом. При «мокром» технологическом процессе основными источниками подтопления являются искусственные, при «сухом» - главным образом естественные источники. В связи с этим следует различать группы предприятий по количеству потребляемой ими воды, от которого зависит объем возможных ее утечек. Классификация промышленных предприятий по удельному расходу (потреблению) воды в м3/сут на 1 га занимаемой предприятием площади приведена в табл. 3.15. 3.111. Потенциальная подтопляемость территорий в значительной степени зависит от природных условий ее, в связи с чем следует различать 6 типовых схем природных условий территорий (табл. 3.16), в основе которых лежат типовые литологические разрезы, в различной степени подверженные подтоплению, и учитываются гидрологические зоны увлажнения, определяемые согласно «Руководству по определению расчетных гидрологических характеристик» (Ленинград, Гидрометеоиздат, 1973). Наиболее подтопляемыми являются территории, сложенные слабопроницаемыми, фильтрационно-анизотропными, просадочными грунтами, застроенные предприятиями, потребляющими большое количество воды в технологическом процессе. Скорость повышения уровня грунтовых вод на таких территориях может достигать 0,5-1 м в год. Наименее подтопляемыми являются территории с глубоким залеганием грунтовых вод, сложенные различными грунтами и застроенные предприятиями с «сухим» технологическим процессом, со скоростью подъема ≤ 0,1 м в год. В зависимости от сочетания схемы природных условий с группой предприятий по количеству потребляемой воды все территории промышленных предприятий разделяются на 4 группы по степени их потенциальной подтопляемости (классификацию территорий см. в табл. 3.17). Наибольшую вероятность значительного повышения уровня грунтовых вод или образование нового техногенного водоносного горизонта следует ожидать и учитывать при проектировании на территориях I и II типов потенциальной подтопляемости, например, на территории с близким залеганием водоупора, сложенной просадочными грунтами, при отсутствии естественных дрен и с проектируемой застройкой предприятиями химической, металлургической или энергетической промышленности (ТЭЦ), потребляющими большие количества воды. Понижение уровня грунтовых вод можно ожидать на территориях, дренируемых со специальной целью его понижения, а также при наличии вблизи водозаборных скважин (при отсутствии активных факторов подтопления, которые могут вызвать локальное замачивание грунтов основания). 3.112(3.20). Расчетное положение уровня грунтовых вод и возможность изменения влажности грунтов в процессе строительства и эксплуатации построенных зданий и сооружений следует принимать по результатам инженерно-геологических изысканий и прогнозов, выполняемых на основе специальных расчетов. Примечание : В табл. 3.17 для предприятий с малыми расходами воды (группа Д) учтена относительная площадь распространения грунтов с нарушенной структурой, обладающих более высокой фильтрационной способностью (относительная площадь планировочной подсыпки), и выделены подгруппы Д1 - территории с относительной площадью подсыпки от 25 до 50 %; Д2 - от 10 до 25%; Д3 - от 0 до 10 %. 3.113. Прогнозирование подтопления выполняется изыскательской организацией в две стадии. Вначале выполняется предварительный, качественный прогноз, затем - количественный. Качественный прогноз заключается в определении типа потенциальной подтопляемости территории ( табл. 3.17) на основе сравнения природных условий территории ( табл. 3.16), а также характеристики проектируемого предприятия по количеству потребляемой им воды ( табл. 3.15). Установление типа потенциальной подтопляемости территории должно определить минимум требований в задании на последующий этап изысканий, необходимых для выполнения количественного прогноза подтопления. Для территории IV типа потенциальной подтопляемости ( табл. 3.17) количественный прогноз, как правило, не выполняется. Количественный прогноз подтопления отдельных зданий и сооружений с установлением возможного уровня грунтовых вод выполняется на основе специальных расчетов, а в сложных геологических условиях с применением моделирования на ЭВМ и аналоговых устройствах. Прогнозом устанавливается расчетная зависимость положения уровня грунтовых вод на различные моменты времени. Для неподтопляемых территорий уровень грунтовых вод принимается постоянным и учитываются лишь его сезонные колебания. Количественное прогнозирование выполняется в соответствии с «Рекомендациями по прогнозу подтопления промышленных площадок грунтовыми водами» (ВОДГЕО, ПНИИИС, 1976). Примеры прогнозирования подтопляемости территории проектируемого предприятия Пример 1. Проектируется предприятие химической промышленности на площадке, сложенной просадочными суглинками мощностью 10 м, подстилаемыми юрскими глинами. Тип грунтовых условий по просадочности - I. Грунтовые воды, по данным изысканий, находятся на глубине 11 м. Площадка находится в зоне переменного увлажнения. Природные условия территории по табл. 3.16 относятся к схеме № 1. Согласно заданию на проектирование (или техническому проекту), количество потребляемой предприятием воды составляет 10 000 м3/сут на 1 га площади, которую будет занимать предприятие. В соответствии с табл. 3.15, по количеству потребляемой воды предприятие относится к группе Б. По табл. 3.17 находим, что предприятие группы Б в природных условиях, соответствующих схеме № 1 (по табл. 3.16), относится к типу I территории по степени потенциальной подтопляемости, для которого вероятность подтопления значительная. В связи с этим в задании на изыскания должны быть изложены требования к выполнению работ по количественному прогнозу подтопления территории. Пример 2. Проектируется строительство элеватора в Средней Азии. По данным изысканий, на стадии выбора площадки природные условия соответствуют схеме № 6 ( табл. 3.16). По количеству потребляемой воды на 1 га (менее 50 м3/сут на 1 га) элеватор относится к группе Д ( табл. 3.15). По табл. 3.17 определяем, что сочетание схемы природных условий с предприятием группы Д соответствует IV типу территории по степени ее потенциальной подтопляемости, т. е. возможность подтопления ее минимальна и для ее предупреждения достаточно ограничиться минимумом водозащитных мероприятий (планировка территории и отвод поверхностных вод от здания). Выполнения количественного прогноза в этом случае не требуется. 3.114(3.21). При проектировании оснований зданий и сооружений с мокрым технологическим процессом должны предусматриваться мероприятия, не допускающие попадания в грунты основания производственных вод и подтопления территории, особенно в случае наличия отходов химического производства, вызывающих набухание грунта или коррозионное воздействие на материал фундаментов. Для своевременного выявления и предупреждения утечек производственных вод в проектах должно быть предусмотрено устройство постоянно действующих наблюдательных скважин. 3.115(3.22). Если существующий или прогнозируемый уровень грунтовых вод не исключает возможности подтопления фундаментов или заглубленных помещений, необходимо при проектировании последних предусматривать мероприятия, исключающие или уменьшающие неблагоприятные последствия этого подтопления на работу оснований и фундаментов, а также эксплуатацию проектируемых зданий и сооружений (устройство постоянно действующего водопонижения, гидроизоляции фундаментов и полов подвалов, специальных проемов в подземных конструкциях, снижающих подпор грунтовых или поверхностных вод, и пр.). 3.116. Выбор и разработку мероприятий по защите территории от подтопления, а также мероприятий, исключающих или уменьшающих неблагоприятное влияние возможного подтопления на свойства грунтов, работу оснований и фундаментов и на эксплуатацию проектируемого здания и сооружения следует выполнять на основе технико-экономической оценки этих мероприятий. При выборе мероприятий для различных условий подтопления допускается пользоваться «Рекомендациями по проектированию защитных сооружений от подтопления промплощадок грунтовыми водами» (ВОДГЕО, 1977). Наблюдательные скважины рекомендуется располагать по сетке, охватывающей всю потенциально подтопляемую территорию проектируемого предприятия. При этом необходимо учесть, что при проектировании предприятий с агрессивными стоками следует предусматривать скважины внутри крупных зданий и сооружений, а также на участках накопителей, гидрозолоотвалов и т. п., в целях определения влияния фильтрующихся растворов на химический состав и агрессивность грунтовых вод. 3.117(3.23). В случаях, когда грунтовые или поверхностные воды, в том числе производственные, обладают агрессивностью по отношению к материалу фундаментов, следует предусматривать, согласно указаниям соответствующих нормативных документов, антикоррозионные мероприятия, не допускающие разрушения материала фундаментов. 3.118. При наличии грунтовых или поверхностных вод, агрессивных по отношению к материалу фундаментов или других заглубленных конструкций, антикоррозионные мероприятия применяются в зависимости от вида коррозии и условий эксплуатации зданий и сооружений по указаниям главы СНиП II-28-73 по защите строительных конструкций и сооружений от коррозии. Следует иметь в виду, что агрессивные грунтовые води, обогащенные химически активными компонентами инфильтрующихся производственных стоков, оказывают неблагоприятное воздействие и на грунты оснований, вызывая их коррозию, растворение и вынос солей, а в некоторых случаях - набухание грунтов. Вследствие этого в необходимых случаях должны применяться мероприятия, не допускающие инфильтрацию агрессивных стоков в грунты оснований, особенно щелочных и кислотных, например антикоррозионную гидроизоляцию фундаментов, отвод агрессивных вод в промышленную канализацию, устройство специальных экранов или дренажей под зданиями и коммуникациями с агрессивными стоками. Выбор и применение мероприятий должны быть технико-экономически обоснованы. 3.119(3.24). Если грунты, окружающие фундамент, подвергаются воздействию поверхностных вод со скоростями, при которых возможно размывание грунтов, а также в случаях, когда в основаниях, сложенных песчаными грунтами или супесями, грунтовые воды движутся со скоростями, способными вымывать частицы грунта или растворять соли, должны приниматься надлежащие меры защиты основания (дренаж, шпунт и т. д.). 3.120(3.25). При проектировании оснований фундаментов или других подземных частей зданий и сооружений, закладываемых ниже напорного горизонта грунтовых вод, должны предусматриваться мероприятия, предупреждающие прорыв и связанное с ним взрыхление, размыв или другие повреждения восходящими токами воды слоев грунта, залегающих в основании. 3.121(3.26). Проверка возможности прорыва напорными водами вышележащего слоя грунта, если в основании проектируемого сооружения залегают водоупорные слои глины, суглинка или ила, подстилаемые слоем грунта с напорными водами, производится исходя из условия: (3.24) (13) где γ W - удельный вес воды; H0 - высота напора воды, отсчитываемая от подошвы проверяемого водоупорного слоя до максимального уровня грунтовых вод; γ1 - расчетное значение объемного веса грунта проверяемого слоя; h0 - расстояние от дна котлована или верха пола подвала до подошвы проверяемого слоя грунта. Если это условие не удовлетворяется, необходимо предусматривать в проекте искусственное понижение напора водоносного слоя (откачка или устройство самоизливающихся скважин). Искусственное снижение напора грунтовых вод должно быть предусмотрено на срок, пока фундамент не приобретет достаточную прочность, обеспечивающую восприятие нагрузки от напора грунтовых вод, но не ранее окончания работ по обратной засыпке грунта в пазухи котлована. 3.122. При заглублении фундаментов ниже пьезометрического уровня грунтовых вод следует учитывать, что возможны два случая: заглубление в грунт, подстилаемый водоносным слоем с напорными водами, когда возможен прорыв грунтов основания, подъем полов и т. п.; в этом случае следует предусматривать мероприятия, снижающие напор (например, откачку воды из скважины), или увеличивать пригрузку на залегающий в основании грунт; заглубление в грунт водоносного слоя - когда возможны размыв, разрыхление грунтов, коррозия и другие повреждения фундаментов; в этом случае кроме снижения напора может предусматриваться также закрепление грунтов. 3.123. При ожидаемом понижении уровня грунтовых вод следует учитывать возникновение дополнительной осадки фундамента. Она происходит вследствие того, что из-за снятия взвешивающего действия воды в зоне между прежним и новым уровнем грунтовой воды природное давление на все нижележащие слои грунта возрастает на величину Δ p, определяемую в зависимости от высоты капиллярного понятия hк, глубины расположения уровня грунтовых вод до его понижения hЕ, величины снижения уровня грунтовых вод Δ hЕ и объемных весов грунтов, расположенных ниже уровня грунтовых вод γвзв, в зоне капиллярного поднятия γ1 и выше этой зоны - γ2. Для случая, когда hк+ h E+ Δ hЕ- h2, величина Δ p находится по формуле: где h2 - толщина слоя грунта над зоной капиллярного поднятия воды, образовавшейся после снижения уровня грунтовых вод. Для случая, когда hк≤ Δ hв, (3.26) где e2, W2 и G2 - коэффициент пористости, влажность и степень влажности в слое грунта выше зоны капиллярного поднятия воды. Для случая, когда hк≥ hв+ Δ hв, (3.27) где e1, W1 и G1 - коэффициент пористости, влажность и степень влажности грунта в зоне капиллярного поднятия воды. При G1 = l Дополнительную осадку Δ S от снижения уровня грунтовых вод допускается определять по формуле: (3.28) где Е - модуль деформации грунта в пределах сжимаемой толщи Н. Величина сжимаемой толщи Н определяется из условия Δ p = 0,2 p σ z', т. е. она равна глубине, на которой p σ z' = 5 Δ p. Природное давление грунта p σ z на глубине z' находится в зависимости от объемных весов грунта в отдельных его слоях ( γвзв, γ1 и γ2) после понижения уровня грунтовых вод. Пример определения дополнительной осадки Δ S, вызванной снижением уровня грунтовой воды Грунты, однородные по глубине, представлены песком мелким с характеристиками: е = 0,7; γв = 2,7 тс/м3 и E = 300 кгс/см2. Высота капиллярного поднятия воды hк = 0,7 м. Уровень грунтовой воды расположен на глубине hв = 1 м. После его снижения на Δ hв = 3 м он будет находиться на глубине hв+ Δ hв = 1+3 = 4 м. Грунт, расположенный ниже уровня грунтовой воды, имеет γвзв = 1 тс/м3; грунт в зоне капиллярного поднятия воды толщиной h1 = 0,7м- γ1 = 2 тс/м3, G1 = l и W1 = 0,26; в слое h2 = 3,3 м, расположенном выше зоны капиллярного поднятия, - γ2 = 1,7 тс/м3, G2 = 0,27 и W2 = 0,07. В рассматриваемом случае имеем hк< Δ hв, поэтому величина Δ p должна определяться по формуле (3.26). Используя значения γ2, γвзв и Δ hв, находим Δ p = (1,7-1) ·3 = 2,1 тс/м2. Глубину сжимаемой толщи грунта H определяем из равенства суммы значений p σ z для каждого слоя грунта с различными значениями γ1 величине 5 Δ p: γ2 h2+ γ1 h1+ γвзв( H- h2- h1) = 1,7 ·3,3+2 ·0,7+1 ·(H-4) = 5 ·2,1 = 10,5. Величина Н будет равна Н = 10,5-3 = 7,5 м и величина 3.124. При проектировании оснований и методов производства работ следует учитывать, что возможно появление больших осадок, если применяется открытый водоотлив, вызывающий вынос частиц грунта из-под фундаментов, особенно если верхняя часть основания сложена песками. Следует также учитывать, что если под верхними слоями грунта лежит песчаный грунт, то понижение уровня грунтовых вод в котловане открытым водоотливом или методами глубинного водопонижения может распространяться на большие расстояния, измеряемые десятками метров. Вследствие этого возможно появление осадок соседних, уже существующих зданий и сооружений. Для уменьшения вредных последствий открытого водоотлива или глубинного водопонижения в проектах оснований и производства работ должны предусматриваться соответствующие мероприятия. ГЛУБИНА ЗАЛОЖЕНИЯ ФУНДАМЕНТОВ 3.125. Глубина заложения фундаментов является одним из основных факторов, обеспечивающих необходимую несущую способность основания и величину деформации, не превышающую предельно допустимую по условиям нормальной эксплуатации проектируемого здания или сооружения и находящегося в них оборудования. Выбор рациональной глубины заложения фундаментов, зависящей от условий, перечисленных в п. 3.126 (3.27), рекомендуется выполнять на основе технико-экономического сравнения различных вариантов фундаментов. 3.126 (3.27). Глубина заложения фундаментов должна определяться с учетом: назначения, а также конструктивных особенностей зданий и сооружений (например, наличия подвалов, подземных коммуникаций, фундаментов под оборудование и т. д.); величины и характера нагрузок и воздействий, действующих на основание; глубины заложения фундаментов примыкающих зданий и сооружений, а также оборудования; существующего и проектируемого рельефа застраиваемой территории; геологических условий площадки строительства (строительных свойств грунтов, характера напластований отдельных видов грунтов, наличия слоев, склонных к скольжению, наличия пустот, образовавшихся вследствие выветривания, растворения солей, и пр.); гидрогеологических условий (уровней грунтовых вод и верховодки, а также возможных их изменений в процессе строительства и эксплуатации здания и сооружения, агрессивности грунтовых вод и т. д.); величины размыва грунта у опор сооружений, возводимых в руслах рек (опор мостов, переходов трубопроводов и т. п.); глубины сезонного промерзания и оттаивания грунтов. 3.127. Глубина заложения фундаментов исчисляется от поверхности планировки или пола подвала до подошвы фундамента, т. е. нижней его поверхности, опирающейся на несущий слой грунта и передающей на него нагрузку. При наличии бетонной подготовки под фундаментом глубина заложения принимается, как правило, до ее низа. Минимальную глубину заложения фундаментов во всех грунтах, кроме скальных, рекомендуется принимать не менее 0,5 м, считая от поверхности наружной планировки. 3.128. При выборе глубины заложения фундаментов под большие нагрузки следует учитывать, что такие фундаменты в целях уменьшения их размеров рационально основывать на малосжимаемых грунтах. При однородных грунтах увеличение глубины заложения фундаментов для уменьшения площади их подошвы должно быть технико-экономически обосновано. 3.129. Разность отметок заложения рядом расположенных фундаментов (рис. 3.6) не должна превышать величину Δ h, определяемую по формуле: где а - расстояние между фундаментами в свету; tgψ - тангенс угла сдвига: (3.30) φ1 и c1 - соответственно расчетные значения угла внутреннего трения и удельного сцепления грунта, определяемые согласно требованиям пп. 3.43-3.49 (3.13-3.15); р - среднее давление на грунты под подошвой вышерасположенного фундамента от нагрузок для расчета по несущей способности. Условие (3.29) распространяется и на случай определения допустимой разности отметок заложения фундаментов здания и рядом расположенных каналов, тоннелей и пр. Фундаменты проектируемого здания, непосредственно примыкающие к фундаментам существующего, рекомендуется принимать на одной отметке. Переход на большую глубину заложения следует выполнять лишь на расстоянии, определяемом по формуле (3.29). Если условие (3.29) не выполняется, следует предусмотреть устройство шпунтовой стенки или другого жесткого ограждения (рис. 3.7). Рис. 3.6. Схема заложения соседних фундаментов на различной глубине 3.130. При выборе глубины заложения фундаментов по инженерно-геологическим и гидрогеологическим условиям рекомендуется: а) выбирать несущий слой грунта основания в зависимости от напластования грунтов, их физико-механических характеристик, способа производства работ, предельно допустимых деформаций основания и его несущей способности; б) предусматривать заглубление фундамента в несущий слой грунта на 10-50 см; в) не оставлять под подошвой фундамента слой грунта малой толщины, если строительные свойства грунта этого слоя значительно хуже свойств подстилающего слоя; г) закладывать фундаменты выше уровня грунтовых вод для исключения необходимости применения водоотлива и сохранения естественной структуры грунта при производстве работ; д) при заложении фундаментов ниже уровня грунтовых вод (с учетом его колебания) предусматривать методы производства работ, сохраняющие структуру грунта; е) если глубина заложения по условиям несущей способности и деформируемости грунтов основания оказывается чрезмерно большой - предусматривать специальные мероприятия по подготовке оснований [п. 3.336 (3.85)] или переходить на свайные фундаменты. 3.131(3.28). Глубина заложения фундаментов должна быть достаточной для надежной работы основания из условия его расчета по предельным состояниям и исключения возможности промерзания пучинистого грунта под подошвой фундамента. 3.132. При проектировании следует учитывать, что одним из основных факторов, определяющих отметку заложения фундаментов, является глубина сезонного промерзания пучинистых грунтов, которые при промораживании увеличиваются в объеме, а после оттаивания дают значительные осадки. Деформации основания при морозном пучении и последующем оттаивании, как правило, неравномерные вследствие естественной неоднородности грунта, в том числе степени его пучинистости, и различия температурных условий, в которых могут находиться грунты под отдельными фундаментами. Рис. 3.7. Схема защиты существующего здания от дополнительных осадок при воздействии рядом нового здания с большей глубиной заложения фундаментов 1 - фундамент существующего здания; 2 - фундамент нового здания; 3 - фундамент с большой глубиной заложения; 4 - шпунтовая стенка 3.133. К пучинистым грунтам относятся пески мелкие и пылеватые, а также глинистые и крупнообломочные грунты с глинистым заполнителем, расположенные вблизи уровня грунтовых вод. Промерзание водонасыщенного пучинистого грунта сопровождается образованием в нем мерзлых прослоек, толщина которых увеличивается по мере миграции воды из слоев грунта, расположенных ниже уровня грунтовых вод. Последующее таяние промерзшего пучинистого грунта делает его переувлажненным и размягченным. Степень пучинистости этих грунтов зависит как от вида и состояния этих грунтов, так и от близости расположения к ним уровня грунтовых вод и определяется согласно указаниям пп. 3.319-3.321 (2-4 прил. 6). 3.134. При назначении глубины заложения фундаментов по условию исключения возможности промерзания пучинистых грунтов под подошвой фундамента имеется в виду ежегодное промерзание в процессе эксплуатации зданий и сооружений. Исключение промерзания грунта в период строительства обеспечивается не глубиной заложения фундамента, а теплозащитными мероприятиями. 3.135(3.29). Исключение возможности промерзания пучинистого грунта под подошвой фундаментов обеспечивается: в период эксплуатации - соответствующей глубиной их заложения, установленной согласно требованиям пп. 3.30-3.39 настоящей главы (пп. 3.136-3.155 Рук.) в зависимости от вида и состояния грунтов, глубины расположения уровня грунтовых вод, нормативной глубины сезонного промерзания, теплового режима здания или сооружения и пр.; в период строительства - защитными мероприятиями, назначаемыми согласно требованиям пп. 3.38-3.38, 3.40 и 3.41 настоящей главы (пп. 3.150-3.154, 3.157-3.160 Рук.). 3.136(3.30). Нормативная глубина сезонного промерзания грунта Hн принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов по данным наблюдений за период не менее 10 лет за фактическим промерзанием грунтов под открытой, оголенной от снега, поверхностью горизонтальной площадки при уровне грунтовых вод, расположенном ниже глубины сезонного промерзания грунтов. 3.137. При использовании наблюдений за фактической глубиной промерзания следует учесть, что она должна определяться не по глубине расположения нулевой температуры, которую обычно сообщают метеорологические станции гидрометслужбы, а по глубине образования твердомерзлого грунта. Последняя обычно расположена выше линии нулевой изотермы. Рис. 3.8. Схематическая карта нормативных глубин промерзания суглинков и глин (изолинии нормативных глубин промерзания, обозначенные пунктиром, даны для малоисследованных районов) 3.138(3.31). Нормативную глубину сезонного промерзания грунтов Hн, см, при отсутствии данных многолетних наблюдений допускается определять на основе теплотехнических расчетов, а для районов, где нормативная глубина промерзания не превышает 2,5 м, - по формуле (3.31) (14) где Σ ׀ Tм - ׀сумма абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемых по главе СНиП по строительной климатологии и геофизике, а при отсутствии в ней данных для конкретного пункта или района строительства - по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях со строительной площадкой; H0 - глубина промерзания при Σ ׀ Tм ׀ = 1, зависящая от вида грунта и принимаемая равной (см) для: суглинков и глин - 23; супесей, песков мелких и пылеватых - 28; песков гравелистых, крупных и средней крупности - 30; крупнообломочных грунтов - 34. Значение H0 для грунтов неоднородного сложения определяется как средневзвешенное по глубине в пределах зоны промерзания грунта. 3.139. Значение H0 в формуле (3.31) (14) для площадок неоднородного сложения (при наличии нескольких слоев с различными значениями H0 i) определяется последовательным приближением как средневзвешенное по глубине в пределах зоны промерзания. В первом приближении рекомендуется принимать значение нормативной глубины промерзания Hн, полученное по формуле (3.31) (14) в предположении, что вся зона промерзания сложена одним видом грунта с величиной H01, равной среднему из учитываемых величин H0 i. Полученное значение H01 используется для уточнения нормативной глубины промерзания H01 и средневзвешенного значения H0ср, с учетом фактической толщины каждого слоя грунта с различными значениями H0 i. Пример определения средневзвешенного значения H0 Необходимо найти нормативную глубину промерзания на площадке, сложенной следующими грунтами. С поверхности залегает слой супеси толщиной h1 = 0,5 м ( H01 = 0,28 м), далее следует слой суглинка толщиной h2 = 1 м ( H02 = 0,23 м), подстилаемый крупнообломочным грунтом ( H03 = 0,34 м). Сумма абсолютных значений среднемесячных отрицательных температур в данном районе Σ ׀ Tм ׀ = 64°. Допустим, что зона промерзания сложена одним грунтом с H01 = 0,28 м. Тогда нормативная глубина сезонного промерзания по формуле (3.31) (14) равна . В этом случае толщина нижнего слоя, которую следует учесть при определении средневзвешенного значения H0ср, равна h 3 = Hн -h1-h2 = 2,24-0,5-1 = 0,74 м При этом С учетом H0ср = 0,277 м нормативная глубина промерзания составляет , т. е. уточнение составляет всего 2 см, поэтому дальнейшие приближения можно не выполнять. 3.140. При определении нормативной глубины промерзания грунтов по формуле (3.31) (14) сумму абсолютных значений среднемесячных отрицательных температур наружного воздуха следует принимать по табл. 1 главы СНиП II-A.6-72 «Строительная климатология и геофизика. Основные положения проектирования». 3.141. В случае если в зоне промерзания залегают суглинки и глины, величину Hн допускается определять по схематической карте главы СНиП II-А.6-72, где даны изолинии нормативных глубин промерзания для этих грунтов, т. е. при H0 = 23 см (рис. 3.8). При наличии в зоне промерзания других грунтов нормативная глубина промерзания, найденная по карте, должна умножаться на отношение H0/23, где H0 соответствует грунтам данной строительной площадки. Для районов Дальнего Востока допускается пользоваться справочником «Характеристика строительной климатологии и геофизики Дальнего Востока» Дальневосточного Промстройниипроекта, 1967, включающим данные по 320 географическим пунктам (вместо 113 по главе СНиП), на основе которых составлена карта изолиний Hн для этого района (рис. 3.9). В случае если значение Hн, найденное по карте, не совпадает со значением по формуле (3.31) (14), в расчет следует принимать значения, найденные по формуле. Пример определения нормативной глубины промерзания Hн по формуле (3.31) (14) и карте СНиП II-А.6-72. Для г. Костромы абсолютное значение суммы отрицательных температур воздуха равно 41,7°. По формуле (3.31) (14) для площадок, сложенных суглинком и глиной, получаем По карте - Hн = 150 см. Рис. 3.9. Схематическая карта нормативной глубины промерзания суглинков в Приморском и Хабаровском краях, а также в Амурской области 3.142. Следует учесть, что ограничения в п. 3.138 (3.31) области применения формуле (3.31) (14) величиной Hн>2,5 м распространяются преимущественно на районы Восточной и Западной Сибири, поскольку для них недостаточно данных наблюдений за фактической глубиной промерзания грунтов на опытных площадках. Кроме того, формуле (3.31) (14) и карту главы СНиП по строительной климатологии и геофизике не рекомендуется применять для горных районов, где резко изменяются рельеф местности и геологические условия. Глубина промерзания для этих районов фактически больше, чем по карте и по формуле (3.31) (14), вследствие особенностей состава и свойств грунтов, рельефа и сурового климата. В этих условиях нормативная глубина промерзания должна определяться теплотехническим расчетом, согласно указаниям главы СНиП II-18-76 «Основания и фундаменты зданий и сооружений на вечномерзлых грунтах. Нормы проектирования». 3.143. Нормативная глубина сезонного промерзания грунта Hн, м, на основе теплотехнического расчета определяется по формуле: (3.32) где λм - коэффициент теплопроводности мерзлого грунта, ккал/(м·ч·град), принимаемый по прил. 1 к главе СНиП II-18-76; t2 - средняя температура воздуха за период отрицательных температур, °С (значение t2 при расчетах принимается со знаком плюс; t2 = Σ Tм: n, здесь Σ Tм и n - соответственно сумма среднемесячных отрицательных температур наружного воздуха и число месяцев с отрицательной среднемесячной температурой воздуха, принимаемые по табл. 1 СНиП II-А.6-72); tн.з - температура начала замерзания грунта, °С (определяется по п. 2.13 СНиП II-18-76); τ2 - продолжительность периода с отрицательными температурами воздуха, ч, соответствующая ( n-1) месяцев с отрицательной среднемесячной температурой по главе СНиП II-А.6-72; где Hн - нормативная глубина промерзания, определяемая по п. 3.31 (п. 3.138 Рук.); mt - коэффициент, учитывающий влияние теплового режима здания (сооружения) на глубину промерзания грунта у фундаментов стен и колонн, принимаемый по указаниям пп. 3.33 и 3.39 настоящей главы (пп. 3.145 и 3.155 Рук.). Определение расчетной глубины промерзания грунтов по формуле (3.35) (15) распространяется только на здания и сооружения массового жилищно-гражданского и промышленного строительства. Формула не распространяется на определение расчетной глубины промерзания грунтов в основании открытых распределительных устройств электроподстанций, отдельных опор линий электропередачи и контактных сетей, а также зданий и сооружений, оказывающих большое тепловое влияние на температурный режим грунтов в основании фундаментов, как, например, горячих цехов, котельных, теплиц, холодильников и др. 3.145(3.33). Коэффициент mt, учитывающий влияние теплового режима здания (сооружения) на промерзание грунта у фундаментов наружных стен и колонн регулярно отапливаемых зданий и сооружений, должен приниматься по табл. 3.19 (14). 3.146. При выборе по табл. 3.19 (14) коэффициента mt, зависящего от температуры воздуха в помещении, следует принимать во внимание, что температура в подвале и технических подпольях может быть ниже температуры помещений первого этажа и отличаться в отдельных частях подвала. Значения температур в помещениях принимаются согласно требованиям глав СНиП или других утвержденных нормативных документов по проектированию соответствующих зданий и сооружений. Значениями коэффициента mt по табл. 3.19 (14) допускается пользоваться и для зданий с нерегулярным отоплением, например промышленных, с односменной работой. В этом случае за расчетную температуру воздуха для определения коэффициента mt принимается ее среднесуточное значение tср, находимое по формуле: (3.36) где t1 и t2 - средняя расчетная температура воздуха в здании в отапливаемые и неотапливаемые периоды суток; n1 и n1 - число часов в сутки, соответствующее температурам воздуха t1 и t2. В случае если температура воздуха в помещении, примыкающем к фундаментам, ниже 5°С, то допускается коэффициент mt принимать равным: для t0 = 0 °С-0,9; 1; 1 и 0,8; для t0 = -5 °С-1; 1; 1 и 0,9, где значения mt для каждой температуры приведены в порядке их расположения по вертикали в табл. 3.19(14). 3.147(3.34). Расчетная глубина промерзания грунта в случае применения теплозащиты основания, а также, если технологический режим в проектируемых зданиях и сооружениях может сильно влиять на температуру грунтов (холодильники, котельные и т. п.), должна определяться теплотехническим расчетом. 3.148(3.35). Глубина заложения фундаментов (от поверхности планировки) отапливаемых зданий и сооружений по условиям недопущения возникновения сил морозного пучения грунтов под подошвой фундаментов должна назначаться: для наружных стен и колонн - по условиям, изложенным в табл. 3.20(15) и п. 3.36 настоящей главы (п. 3.150 Рук.); для внутренних стен и колонн - по указаниям п. 3.37 настоящей главы (п. 3.152 Рук.). В обоих случаях глубина заложения фундаментов должна отвечать требованиям п. 3.38 настоящей главы (п. 3.153 Рук.) с исчислением ее и расчетной глубины промерзания от пола подвала или технического подполья. Глубина заложения фундаментов неотапливаемых зданий устанавливается по требованиям п. 3.39 настоящей главы (п. 3.155 Рук.). 3.149. При назначении глубины заложения фундаментов по условиям морозного пучения грунтов следует учитывать большое влияние на интенсивность этого процесса дисперсности грунта и близости расположения к нему уровня грунтовых вод. Так, например, глубина заложения фундаментов в суглинках и глинах зависит от положения уровня грунтовых вод, а для песков крупных и средних морозное пучение не может возникнуть при любом уровне грунтовых вод и поэтому глубина заложения фундаментов не зависит от него. Уровень грунтовых вод должен приниматься с учетом его прогнозирования на период эксплуатации здания или сооружения по указаниям пп. 3.108 - 3.114 (3.18 - 3.21) и влияния на него водопонижающих мероприятий, если они предусматриваются проектом. При использовании прим. 3 к табл. 3.20 (15) следует учесть, что когда по условиям морозного пучения глубина заложения фундаментов должна быть не менее расчетной глубины промерзания грунтов Н (или 0,5 Н), то величину и необходимость превышения этой глубины устанавливают исходя из всех других условий, которые необходимо учитывать при назначении глубины заложения фундаментов, в том числе условию удовлетворения размеров этой глубины расчету по предельным состояниям. 3.150 (3.36).

Руководство по проектированию оснований зданий и сооружений
  • Текст Руководство Руководство по проектированию оснований зданий и сооружений скачать бесплатно МОСКВА 1978 Раздел 11 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ И ФУНДАМЕНТОВ ЗДАНИЙ И.
  • Download: Руководство по проектированию фундаментов на естественном основании под колонны зданий и сооружений промышленных предприятий ( 1978). Основания и фундаменты.
  • Руководство Руководство по проектированию оснований зданий и МОСКВА 1978 ПРОЕКТИРОВАНИЕ ФУНДАМЕНТОВ В ВЫТРАМБОВАННЫХ.

Скачать бесплатно Руководство, Руководство по проектированию Дата введения в действие: 01.01. 1978 Раздел 11 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИЙ И ФУНДАМЕНТОВ Москва, 2-я Институтская, 6).

Комментарии (0)Просмотров (232)


Зарегистрированный
Анонимно